
	

https://vexip.maxudijuz.com/452046031215191138535568102039917188522144?xojetoxobifovuxurepilugi=subagikinifukamuzamuxuvikenaluraxufawibufulujoromejidimetevavufiwafisegonutiruwaniwijutawegijinejotujepuzilitofibarazapusajelawubikozigirivesogojafonutojowubajeduvugimiloretexisowufagedozulumomugepiwito&utm_kwd=types+of+testing+in+software+engineering+with+examples&temokimajolemumebedokawonusenijesomutovevevolemufozisamanadisatanefiveregosigumawasumejidoderoxinuru=bukofefufovobulimevumopisagifamuvudotuzugerozumusejawixateludixezuwuxavumotisorukikanubuzeretunurisogukuwiwil




























Black	Box	Testing	is	a	Software	testing	method	in	which	the	internal	working	of	the	application	is	not	known	to	the	tester.	The	Black	Box	Testing	mainly	focuses	on	testing	the	functionality	of	software	without	any	knowledge	of	the	internal	logic	of	an	application.	Here	we	are	learning	the	topics	related	to	the	Black	Box	Testing	in	detail.What	is	Black
Box	Testing?	Black-box	testing	is	a	Type	of	Software	Testing	in	which	the	tester	is	not	concerned	with	the	software’s	internal	knowledge	or	implementation	details	but	rather	focuses	on	validating	the	functionality	based	on	the	provided	specifications	or	requirements.Black	Box	TestingTypes	Of	Black	Box	TestingThe	testing	of	application	without
knowing	the	internal	code	or	structure,	following	are	the	various	Types	of	Black	Box	Testing:Types	of	Black	Box	Testing1.	Functional	TestingFunctional	Testing	is	a	type	of	Software	Testing	in	which	the	system	is	tested	against	the	functional	requirements	and	specifications.	Functional	testing	ensures	that	the	requirements	or	specifications	are
properly	satisfied	by	the	application.This	testing	is	not	concerned	with	the	source	code	of	the	application.	Each	functionality	of	the	software	application	is	tested	by	providing	appropriate	test	input,	expecting	the	output,	and	comparing	the	actual	output	with	the	expected	output.This	testing	focuses	on	checking	the	user	interface,	APIs,	database,
security,	client	or	server	application,	and	functionality	of	the	Application	Under	Test.	Functional	testing	can	be	manual	or	automated.	It	determines	the	system’s	software	functional	requirements.2.	Regression	TestingRegression	Testing	is	like	a	Software	Quality	checkup	after	any	changes	are	made.	It	involves	running	tests	to	make	sure	that
everything	still	works	as	it	should,	even	after	updates	or	tweaks	to	the	code.	This	ensures	that	the	software	remains	reliable	and	functions	properly,	maintaining	its	integrity	throughout	its	development	lifecycle.Regression	means	the	return	of	something	and	in	the	software	field,	it	refers	to	the	return	of	a	bug.	It	ensures	that	the	newly	added	code	is
compatible	with	the	existing	code.In	other	words,	a	new	software	update	has	no	impact	on	the	functionality	of	the	software.	This	is	carried	out	after	a	system	maintenance	operation	and	upgrades.3.	Nonfunctional	TestingNon-functional	Testing	is	a	type	of	Software	Testing	that	is	performed	to	verify	the	non-functional	requirements	of	the	application.
It	verifies	whether	the	behavior	of	the	system	is	as	per	the	requirement	or	not.	It	tests	all	the	aspects	that	are	not	tested	in	functional	testing.It	is	designed	to	test	the	readiness	of	a	system	as	per	nonfunctional	parameters	which	are	never	addressed	by	functional	testing.It	is	as	important	as	functional	testing.It	is	also	known	as	NFT.	This	testing	is	not
functional	testing	of	software.	It	focuses	on	the	software’s	performance,	usability,	and	scalability.Advantages	of	Black	Box	Testing	The	tester	does	not	need	to	have	more	functional	knowledge	or	programming	skills	to	implement	the	Black	Box	Testing.	It	is	efficient	for	implementing	the	tests	in	the	larger	system.	Tests	are	executed	from	the	user's	or
client's	point	of	view.	Test	cases	are	easily	reproducible.	It	is	used	to	find	the	ambiguity	and	contradictions	in	the	functional	specifications.	Disadvantages	of	Black	Box	Testing	There	is	a	possibility	of	repeating	the	same	tests	while	implementing	the	testing	process.	Without	clear	functional	specifications,	test	cases	are	difficult	to	implement.	It	is
difficult	to	execute	the	test	cases	because	of	complex	inputs	at	different	stages	of	testing.	Sometimes,	the	reason	for	the	test	failure	cannot	be	detected.	Some	programs	in	the	application	are	not	tested.	It	does	not	reveal	the	errors	in	the	control	structure.	Working	with	a	large	sample	space	of	inputs	can	be	exhaustive	and	consumes	a	lot	of	time.
Difference	between	Black	Box	Testing	and	White	Box	TestingHere	are	the	Difference	between	Black	Box	Testing	and	White	Box	Testing:ParametersBlack	Box	TestingWhite	Box	TestingDefinitionBlack	Box	Testing	is	a	way	of	software	testing	in	which	the	internal	structure	or	the	program	or	the	code	is	hidden	and	nothing	is	known	about	it.White	Box
Testing	is	a	way	of	testing	the	software	in	which	the	tester	has	knowledge	about	the	internal	structure	or	the	code	or	the	program	of	the	software.Testing	objectivesBlack	box	testing	is	mainly	focused	on	testing	the	functionality	of	the	software,	ensuring	that	it	meets	the	requirements	and	specifications.White	box	testing	is	mainly	focused	on	ensuring
that	the	internal	code	of	the	software	is	correct	and	efficient.Testing	methodsBlack	box	testing	uses	methods	like	equivalence	partitioning,	boundary	value	analysis,	and	error	guessing	to	create	test	cases.White	box	testing	uses	methods	like	control	flow	testing,	data	flow	testing	and	statement	coverage	testing.Knowledge	levelBlack	box	testing	does
not	require	any	knowledge	of	the	internal	workings	of	the	software,	and	can	be	performed	by	testers	who	are	not	familiar	with	programming	languages.White	box	testing	requires	knowledge	of	programming	languages,	software	architecture	and	design	patterns.ScopeBlack	box	testing	is	generally	used	for	testing	the	software	at	the	functional
level.White	box	testing	is	used	for	testing	the	software	at	the	unit	level,	integration	level	and	system	level.Grey	Box	Testing	Gray	Box	Testing	is	a	software	testing	technique	that	is	a	combination	of	the	Black	Box	Testing	technique	and	the	White	Box	Testing	technique.	In	the	Black	Box	Testing	technique,	the	tester	is	unaware	of	the	internal	structure
of	the	item	being	tested	and	in	White	Box	Testing	the	internal	structure	is	known	to	the	tester.	The	internal	structure	is	partially	known	in	Gray	Box	Testing.	This	includes	access	to	internal	data	structures	and	algorithms	to	design	the	test	cases.	Gray	Box	Testing	is	named	so	because	the	software	program	is	like	a	semitransparent	or	gray	box	inside
which	the	tester	can	partially	see.	It	commonly	focuses	on	context-specific	errors	related	to	web	systems.	Objectives	of	Gray	Box	TestingTo	provide	combined	advantages	of	both	black	box	testing	and	white	box	testing.	To	combine	the	input	of	developers	as	well	as	testers.	To	improve	overall	product	quality.	Ways	of	Black	Box	Testing	Done1.	Syntax-
Driven	TestingSyntax-Driven	Testing	is	a	Software	Engineering	technique	or	approach	that	is	used	in	functional	automation	testing	that’s	why	called	a	type	of	functional	automation	testing.	This	type	of	testing	is	applied	to	systems	that	can	be	syntactically	represented	by	some	language.For	example,	language	can	be	represented	by	context-free
grammar.In	this,	the	test	cases	are	generated	so	that	each	grammar	rule	is	used	at	least	once.2.	Equivalence	partitioningEquivalence	Partitioning	Methods	is	also	known	as	Equivalence	Class	partitioning	(ECP).	It	is	a	software	testing	technique	or	black-box	testing	that	divides	input	domain	into	classes	of	data,	and	with	the	help	of	these	classes	of
data,	test	cases	can	be	derived.The	idea	is	to	partition	the	input	domain	of	the	system	into	several	Equivalence	Classes	such	that	each	member	of	the	class	works	similarly.If	a	test	case	in	one	class	results	in	some	error,	other	members	of	the	class	would	also	result	in	the	same	error.The	technique	involves	two	steps:Identification	of	equivalence	class	–
	Partition	any	input	domain	into	a	minimum	of	two	sets:	valid	values	and	invalid	values	.	For	example,	if	the	valid	range	is	0	to	100	then	select	one	valid	input	like	49	and	one	invalid	like	104.Generating	test	cases-	To	each	valid	and	invalid	class	of	input	assign	a	unique	identification	number.	Write	a	test	case	covering	all	valid	and	invalid	test	cases
considering	that	no	two	invalid	inputs	mask	each	other.	The	whole	number	which	is	a	perfect	square-output	will	be	an	integer.	The	entire	number	which	is	not	a	perfect	square-output	will	be	a	decimal	number.	Positive	decimals	Negative	numbers(integer	or	decimal).	Characters	other	than	numbers	like	“a”,”!”,”;”,	etc.3.	Boundary	value
analysisBoundary	Value	Analysis	is	based	on	testing	the	boundary	values	of	valid	and	invalid	partitions.	The	behavior	at	the	edge	of	the	equivalence	partition	is	more	likely	to	be	incorrect	than	the	behavior	within	the	partition,	so	boundaries	are	an	area	where	testing	is	likely	to	yield	defects.Boundaries	are	very	good	places	for	errors	to	occur.Hence,	if
test	cases	are	designed	for	boundary	values	of	the	input	domain	then	the	efficiency	of	testing	improves	and	the	probability	of	finding	errors	also	increases.For	example	–	If	the	valid	range	is	10	to	100	then	test	for	10,100	also	apart	from	valid	and	invalid	inputs.4.	Cause	effect	graphingThis	technique	establishes	a	relationship	between	logical	input
called	causes	with	corresponding	actions	called	the	effect.	The	causes	and	effects	are	represented	using	Boolean	graphs.	The	following	steps	are	followed:Identify	inputs	(causes)	and	outputs	(effect).Develop	a	cause-effect	graph.Transform	the	graph	into	a	decision	table.Convert	decision	table	rules	to	test	cases.	For	example,	in	the	following	cause-
effect	graph:	It	can	be	converted	into	a	decision	table	like:	Each	column	corresponds	to	a	rule	which	will	become	a	test	case	for	testing.	So	there	will	be	4	test	cases.5.	Requirement-based	testingRequirement-Based	Testing	in	Software	Development	refers	to	a	crucial	process	that	involves	validating	a	software	system	based	on	its	specified	criteria.
This	approach	guarantees	that	the	software	aligns	with	documented	specifications	and	meets	the	anticipated	outcomes	outlined	during	the	initial	phases	of	the	project.	Principles	of	Requirement-Based	TestingTraceability:	The	approach	aims	to	establish	clear	links	between	each	test	and	its	respective	requirements,	ensuring	easy	tracking.Early
Engagement:	Early	involvement	in	testing	allows	teams	to	comprehend,	validate,	and	clarify	requirements,	minimizing	misinterpretation	risks.Validation	and	Verification:	This	methodology	focuses	on	both	aspects	to	ensure	software	compliance	with	specified	requirements,	boosting	testing	reliability.6.	Compatibility	testingCompatibility	Testing	is	the
test	case	results	not	only	depends	on	the	product	but	is	also	on	the	infrastructure	for	delivering	functionality.	When	the	infrastructure	parameters	are	changed	it	is	still	expected	to	work	properly.	Some	parameters	that	generally	affect	the	compatibility	of	software	are:Processor	(Pentium	3,	Pentium	4)	and	several	processors.Architecture	and
characteristics	of	machine	(32-bit	or	64-bit).Back-end	components	such	as	database	servers.Operating	System	(Windows,	Linux,	etc.)Black	box	testing	focuses	on	verifying	the	functionality	of	a	software	application	by	evaluating	its	inputs	and	outputs	without	any	knowledge	of	its	internal	workings.	The	tester	interacts	with	the	system	as	an	end-user	to
ensure	the	software	meets	its	requirements	and	performs	tasks	as	expected.QA	WolfMobotSelendroidWatirKatalonIBM	Rational	Functional	Tester	(RFT)AutoHotkeyRanorexSelenium	IDETestCompleteFeatures	of	Black	Box	TestingIndependent	testing:	Black	box	testing	is	performed	by	testers	who	are	not	involved	in	the	development	of	the
application,	which	helps	to	ensure	that	testing	is	unbiased	and	impartial.Testing	from	a	user’s	perspective:	Black	box	testing	is	conducted	from	the	perspective	of	an	end	user,	which	helps	to	ensure	that	the	application	meets	user	requirements	and	is	easy	to	use.No	knowledge	of	internal	code:	Testers	performing	black	box	testing	do	not	have	access
to	the	application’s	internal	code,	which	allows	them	to	focus	on	testing	the	application’s	external	behavior	and	functionality.Requirements-based	testing:	Black	box	testing	is	typically	based	on	the	application’s	requirements,	which	helps	to	ensure	that	the	application	meets	the	required	specifications.Different	testing	techniques:	Black	box	testing	can
be	performed	using	various	testing	techniques,	such	as	functional	testing,	usability	testing,	acceptance	testing,	and	regression	testing.Easy	to	automate:	Black	box	testing	is	easy	to	automate	using	various	automation	tools,	which	helps	to	reduce	the	overall	testing	time	and	effort.Scalability:	Black	box	testing	can	be	scaled	up	or	down	depending	on
the	size	and	complexity	of	the	application	being	tested.Limited	knowledge	of	application:	Testers	performing	black	box	testing	have	limited	knowledge	of	the	application	being	tested,	which	helps	to	ensure	that	testing	is	more	representative	of	how	the	end	users	will	interact	with	the	application.What	Does	black	Box	Testing	Focus	On?Black	Box
Testing	focuses	on	assessing	how	an	application	performs	based	on	its	inputs	and	outputs,	without	the	need	to	look	internally	in	the	code	or	internal	structure.	Here	are	the	key	areas	Black	Box	Testing	focuses	on:Functional	Requirements:	verify	the	software	performs	the	tasks	it	was	designed	for,	according	to	the	requirements,	and	meets	user
expectations.User	Interface	(UI):	Tests	the	usability	of	the	application	by	checking	the	interface	is	easy	to	navigate	and	works	properly	for	users.Input	Validation:	Verifies	that	the	system	correctly	handles	both	valid	and	invalid	inputs,	providing	the	right	output	and	error	messages	when	needed	while	running.Security:	Checks	that	sensitive	data	is
protected	through	encryption,	proper	access	controls	are	in	place,	and	there	are	no	security	vulnerabilities	that	could	be	exploited.Performance	and	Reliability:	Assesses	how	the	application	behaves	under	stress,	such	as	high	user	load	or	long	periods	of	use,	ensuring	it	remains	stable	and	reliable.Compatibility:	Verifies	the	software	works	across
various	platforms,	including	different	operating	systems,	browsers,	devices,	and	network	configurations.Error	Handling:	Tests	how	the	system	handles	unexpected	issues	or	failures.	The	application	should	fail	gracefully	without	crashing	and	display	meaningful	error	messages.System	Integration:	Ensures	all	parts	of	the	application	and	any	external
services	(like	APIs)	are	working	well	together,	confirming	the	system	functions	as	intended	when	components	interact.ConclusionHere	we	learned	the	actual	process	of	Black	Box	Testing,	and	we	discussed	the	all	topics	related	to	the	same	in	detail.	If	you	want	to	learn	more	about	the	Software	Testing	types	and	all	related	to	Software	testing.	Refer
the	"Software	Testing	Tutorial"	which	is	really	helpful	for	learning	purposes.	Functional	Testing	is	a	type	of	Software	Testing	in	which	the	system	is	tested	against	the	functional	requirements	and	specifications.	Functional	testing	ensures	that	the	application	properly	satisfies	the	requirements	or	specifications.	This	type	of	testing	is	particularly
concerned	with	the	result	of	processing.	It	focuses	on	the	simulation	of	actual	system	usage	but	does	not	develop	any	system	structure	assumptions.	The	article	focuses	on	discussing	function	testing.	What	is	Functional	Testing?	Functional	testing	is	defined	as	a	type	of	testing	that	verifies	that	each	function	of	the	software	application	works	in
conformance	with	the	requirement	and	specification.	This	testing	is	not	concerned	with	the	source	code	of	the	application.	Each	functionality	of	the	software	application	is	tested	by	providing	appropriate	test	input,	expecting	the	output,	and	comparing	the	actual	output	with	the	expected	output.	This	testing	focuses	on	checking	the	user	interface,
APIs,	database,	security,	client	or	server	application,	and	functionality	of	the	Application	Under	Test.	Functional	testing	can	be	manual	or	automated.	Just	as	functional	testing	is	crucial	for	ensuring	that	a	software	application	meets	its	specified	requirements,	having	a	solid	understanding	of	how	to	effectively	carry	out	this	type	of	testing	is	essential
for	any	software	tester.	If	you’re	looking	to	deepen	your	expertise	in	functional	testing	and	other	key	areas	of	software	testing,	consider	exploring	the	Complete	Guide	to	Software	Testing	&	Automation	by	GeeksforGeeks	.	This	course	offers	in-depth	knowledge	on	testing	methodologies,	including	both	manual	and	automated	testing,	helping	you
ensure	that	every	function	of	your	application	works	flawlessly	and	meets	the	needs	of	your	users.Purpose	of	Functional	Testing	Functional	testing	mainly	involves	black	box	testing	and	can	be	done	manually	or	using	automation.	The	purpose	of	functional	testing	is	to:	Functional	Testing	Flow	Test	each	function	of	the	application:	Functional	testing
tests	each	function	of	the	application	by	providing	the	appropriate	input	and	verifying	the	output	against	the	functional	requirements	of	the	application.	Test	primary	entry	function:	In	functional	testing,	the	tester	tests	each	entry	function	of	the	application	to	check	all	the	entry	and	exit	points.	Test	flow	of	the	GUI	screen:	In	functional	testing,	the
flow	of	the	GUI	screen	is	checked	so	that	the	user	can	navigate	throughout	the	application.	What	to	Test	in	Functional	Testing?	The	goal	of	functional	testing	is	to	make	sure	the	app’s	features	work	as	they	should.	It	focuses	on	these	key	areas:Basic	Usability:	This	checks	if	users	can	easily	navigate	the	app	without	any	trouble.	It’s	all	about	making
sure	the	experience	is	smooth.Main	Functions:	Functional	testing	also	looks	at	the	app	is	a	core	features	to	verify	they	are	working	correctly,	just	as	they’re	meant	to.Accessibility:	This	ensures	the	app	is	accessible	to	everyone,	including	users	with	disabilities.	It	checks	whether	accessibility	features	are	in	place	and	functioning	properly.Error
Handling:	Lastly,	it	tests	how	the	app	handles	errors.	Are	the	right	error	messages	shown	when	something	goes	wrong?	This	part	verify	users	are	informed	when	an	issue	arises.Functional	Testing	Process	Functional	testing	involves	the	following	steps:	Step	1.	Identify	test	input:	This	step	involves	identifying	the	functionality	that	needs	to	be	tested.
This	can	vary	from	testing	the	usability	functions,	and	main	functions	to	error	conditions.	Functional	Testing	process	Step	2.	Compute	expected	outcomes:	Create	input	data	based	on	the	specifications	of	the	function	and	determine	the	output	based	on	these	specifications.	Step	3.	Execute	test	cases:	This	step	involves	executing	the	designed	test	cases
and	recording	the	output.	Step	4.	Compare	the	actual	and	expected	output:	In	this	step,	the	actual	output	obtained	after	executing	the	test	cases	is	compared	with	the	expected	output	to	determine	the	amount	of	deviation	in	the	results.	This	step	reveals	if	the	system	is	working	as	expected	or	not.	Type	of	Functional	Testing	Techniques	There	are
various	types	of	functional	Testing	which	are	as	follows:	Functional	Testing	Techniques	Unit	testing:	It	is	the	type	of	functional	testing	technique	where	the	individual	units	or	modules	of	the	application	are	tested.	It	ensures	that	each	module	is	working	correctly.	Integration	testing:	Combined	individual	units	are	tested	as	a	group	and	expose	the
faults	in	the	interaction	between	the	integrated	units.	Smoke	testing:	It	is	a	type	of	functional	testing	technique	where	the	basic	functionality	or	feature	of	the	application	is	tested	as	it	ensures	that	the	most	important	function	works	properly.	User	acceptance	testing:	It	is	done	by	the	client	to	certify	that	the	system	meets	the	requirements	and	works
as	intended.	It	is	the	final	phase	of	testing	before	the	product	release.	Interface	testing:	is	a	type	of	software	testing	technique	that	checks	the	proper	interaction	between	two	different	software	systems.	System	testing:	It	is	a	type	of	software	testing	that	is	performed	on	the	complete	integrated	system	to	evaluate	the	compliance	of	the	system	with	the
corresponding	requirements.	Regression	testing:	It	is	done	to	make	sure	that	the	code	changes	do	not	affect	the	existing	functionality	and	the	features	of	the	application.	It	concentrates	on	whether	all	parts	are	working	or	not.	Sanity	testing:	It	is	a	subset	of	regression	testing	and	is	done	to	make	sure	that	the	code	changes	introduced	are	working	as
expected.	White	box	testing:	It	is	a	type	of	software	testing	that	allows	the	tester	to	verify	the	internal	workings	of	the	software	system.	This	includes	analyzing	the	code,	infrastructure,	and	integrations	with	the	external	system.	Black	box	testing:	It	is	a	type	of	software	testing	where	the	functionality	of	the	software	system	is	tested	without	looking	at
the	internal	workings	or	structures	of	the	software	system.	Database	testing:	It	is	a	type	of	software	testing	that	checks	the	schema,	tables,	etc	of	the	database	under	test.	Adhoc	testing:	It	also	known	as	monkey	testing	or	random	testing	is	a	type	of	software	testing	that	does	not	follow	any	documentation	or	test	plan	to	perform	testing.	Recovery
testing:	It	is	a	type	of	software	testing	that	verifies	the	software's	ability	to	recover	from	failures	like	hardware	failures,	software	failures,	crashes,	etc.	Static	testing:	It	is	a	type	of	software	testing	that	is	performed	to	check	the	defects	in	software	without	actually	executing	the	code	of	the	software	application.	Grey	box:	This	testing	is	a	type	of
software	testing	that	includes	black-box	and	white-box	testing.	Component	testing:	It	is	also	known	as	program	testing	or	module	testing	is	a	type	of	software	testing	that	is	done	after	the	unit	testing.	In	this,	the	test	objects	can	be	tested	independently	as	a	component	without	integrating	with	other	components.	Functional	Testing	vs	Non-Functional
Testing	Below	are	the	differences	between	functional	testing	and	non-functional	testing:	Parameters	Functional	Testing	Non-functional	Testing	Definition	Functional	testing	verifies	the	operations	and	actions	of	an	application.	Non-functional	verifies	the	behavior	of	an	application.	Testing	based	on	It	is	based	on	the	requirements	of	the	customer.	It	is
based	on	the	expectations	of	the	customer.	Objective	The	objective	is	to	validate	software	actions.	The	objective	is	to	performance	of	the	software	system	Requirements	Functional	testing	is	carried	out	using	the	functional	specification.	Non-functional	testing	is	carried	out	using	the	performance	specifications.	Functionality	It	describes	what	the
product	does.	It	describes	how	the	product	works.	Example	Unit	testing.	Integration	testing.	Sanity	testing	Smoke	testing.	Regression	testing.	Performance	testing.	Load	testing.	Stress	testing.	Volume	testing.	Usability	testing.	Read	More:	Differences	between	Functional	and	Non-functional	Testing	Below	are	the	tools	for	functional	testing:	1.
Selenium:	It	is	an	open-source	umbrella	project	for	a	range	of	tools	and	libraries	developed	with	the	aim	to	support	browser	automation.	It	is	used	to	automate	web	browsers.	It	provides	a	single	interface	that	lets	the	tester	write	test	scripts	in	languages	like	Ruby,	Java,	NodeJS,	etc.	It	provides	a	playback	tool	for	authoring	functional	tests	across	most
modern	web	browsers.	2.	QTP:	This	tool	now	can	UFT	is	a	tool	designed	to	perform	automated	functional	testing	without	the	need	to	monitor	the	system	in	intervals.	It	can	be	used	to	test	web,	desktop	applications,	and	client	servers.	It	is	based	on	the	VB	scripting	language.	It	is	one	of	the	widely	used	automation	tools	in	the	testing	industry.	3.	JUnit:
It	is	a	unit-testing	open-source	framework	for	the	Java	programming	language.	It	is	used	by	Java	developers	to	write	and	execute	automated	test	cases.	It	can	be	used	along	with	the	Selenium	WebDriver	to	automate	tests	for	web	applications.	It	provides	several	annotations	to	identify	test	methods.	It	has	test	runners	to	run	tests.	4.	SoapUI:	It	is	one	of
the	leading	tools	for	SOAP	and	web	service	testing.	It	allows	for	easy	and	rapid	creation	and	execution	of	functional,	regression,	and	load	tests.	It	has	an	easy-to-use	graphical	interface.	It	provides	a	code-free	test	environment	where	one	can	create	and	execute	complex	test	cases	with	drag-and-drop	options.	It	lets	to	dynamically	analyze	how	well
SOAP	and	REST	service	contract	is	covered	by	the	functional	tests.	5.	Cucumber:	It	is	an	open-source	testing	tool	written	in	Ruby	language.	This	tool	focuses	on	end-user	experience.	Quick	and	easy	setup	and	execution.	This	tool	allows	for	easy	reuse	of	code	in	tests	due	to	the	style	of	writing	the	tests.	Best	Practices	for	Functional	Testing	Automate:
Functional	tests	can	be	repetitive,	time-consuming	processes	so	the	more	the	tests	are	automated	the	faster	one	can	identify	and	correct	defects,	and	the	more	savings	can	be	achieved	in	time	and	costs.	It	may	not	be	possible	to	automate	all	test	cases,	so	automating	important	test	cases	can	improve	the	test	ROI.	Dedicated	automation	team:
Automation	requires	time,	effort,	and	a	special	skill	set.	It	is	considered	best	to	allocate	automation	tasks	to	those	who	are	equipped	to	accomplish	them.	Create	test	early:	It	is	best	to	create	test	cases	when	the	project	is	in	its	early	phases	as	the	requirements	are	fresh	and	it	is	always	possible	to	amend	test	cases	later	in	the	project	development
cycle.	Pick	the	right	tests:	It	is	very	important	to	pick	the	right	test	cases	to	automate.	Some	tests	require	setup	and	configuration	during	and	before	execution,	so	it's	best	not	to	automate	them.	Automate	tests	that	need	to	be	executed	repeatedly,	tests	that	are	prone	to	human	error.	Prioritize:	Testers	have	finite	time	and	budget,	so	it	is	not	possible
to	test	each	and	every	feature	in	the	application.	Consider	high-priority	functions	first	to	create	test	cases.	Test	frequently:	Prepare	a	basic	test	automation	bucket	and	create	a	strategy	for	frequent	execution	of	this	test	bucket.	Benefits	of	Functional	Testing	Bug-free	product:	Functional	testing	ensures	the	delivery	of	a	bug-free	and	high-quality
product.	Customer	satisfaction:	It	ensures	that	all	requirements	are	met	and	ensures	that	the	customer	is	satisfied.	Testing	focused	on	specifications:	Functional	testing	is	focused	on	specifications	as	per	customer	usage.	Proper	working	of	application:	This	ensures	that	the	application	works	as	expected	and	ensures	proper	working	of	all	the
functionality	of	the	application.	Improves	quality	of	the	product:	Functional	testing	ensures	the	security	and	safety	of	the	product	and	improves	the	quality	of	the	product.	Limitations	of	Functional	Testing	Missed	critical	errors:	There	are	chances	while	executing	functional	tests	that	critical	and	logical	errors	are	missed.	Redundant	testing:	There	are
high	chances	of	performing	redundant	testing.	Incomplete	requirements:	If	the	requirement	is	not	complete	then	performing	this	testing	becomes	difficult.	Conclusion	In	conclusion,	Functional	testing	will	check	that	each	function	of	a	software	application	has	been	working	as	expected	and	focuses	on	the	user	interface,	APIs,	and	functionality.	While	it
improves	product	quality	and	customer	satisfaction,	it	may	miss	the	major	errors	and	involve	repeated	testing.	overall	the	important	to	deliver	a	bug-free	and	high-quality	product	as	output.	In	this	post	‘Types	of	Software	Testing‘,	I	would	like	to	mention	almost	all	the	software	testing	types	in	one	place.	One	challenge	to	learning	about	software
testing	is	that	there	are	many	terms	in	the	industry,	and	these	terms	often	used	inconsistently.	While	there	is	no	universally-accepted	definitions	for	all	the	testing	terms,	I	think	a	good	source	is	to	refer	ISTQB	Certified	Tester	Foundation	Level	Syllabus.The	Ultimate	List	of	100+	Software	Testing	TypesI	would	like	to	start	with	Software	Testing	before
going	to	the	actual	post	100+	Software	Test	Types.Software	Testing:	It	is	a	process,	to	evaluate	the	functionality	of	a	software	application	with	an	intent	to	find	whether	the	developed	software	met	the	specified	requirements	or	not	and	to	identify	the	defects	to	ensure	that	the	product	is	defect-free	in	order	to	produce	a	quality	product.	Read	more	on
Software	Testing	Definitions	&	Approaches.The	Ultimate	List	of	Types	of	Testing:Let’s	see	different	types	of	Testing	one	by	one.1.	Functional	testing:	In	simple	words,	what	the	system	actually	does	is	functional	testing.	To	verify	that	each	function	of	the	software	application	behaves	as	specified	in	the	requirement	document.	Testing	all	the
functionalities	by	providing	appropriate	input	to	verify	whether	the	actual	output	is	matching	the	expected	output	or	not.	It	falls	within	the	scope	of	black-box	testing	and	the	testers	need	not	concern	about	the	source	code	of	the	application.2.	Non-functional	testing:	In	simple	words,	how	well	the	system	performs	is	non-functionality	testing.	Non-
functional	testing	refers	to	various	aspects	of	the	software	such	as	performance,	load,	stress,	scalability,	security,	compatibility,	etc.,	Main	focus	is	to	improve	the	user	experience	on	how	fast	the	system	responds	to	a	request.3.	Manual	testing:	Manual	testing	is	the	process	of	testing	the	software	manually	to	find	the	defects.	A	tester	should	have	the
perspective	of	an	end-user	and	to	ensure	all	the	features	are	working	as	mentioned	in	the	requirement	document.	In	this	process,	testers	execute	the	test	cases	and	generate	the	reports	manually	without	using	any	automation	tools.4.	Automated	testing:	Automation	testing	is	the	process	of	testing	the	software	using	an	automation	tool	to	find	the
defects.	In	this	process,	executing	the	test	scripts	and	generating	the	results	are	performed	automatically	by	automation	tools.	Some	most	popular	tools	to	do	automation	testing	are	HP	QTP/UFT,	Selenium	WebDriver,	etc.,Learn	the	Difference	between	Manual	&	Automated	Testing	here…5.	Black	box	testing:	Black	Box	Testing	is	a	software
testing	method	in	which	testers	evaluate	the	functionality	of	the	software	under	test	without	looking	at	the	internal	code	structure.	This	can	be	applied	to	every	level	of	software	testing	such	as	Unit,	Integration,	System	and	Acceptance	Testing.Read	more	on	black	box	testing	here…6.	Glass	box	testing:	The	glass	box	testing	is	a	methodology	of	testing
that	scans	the	program	structure	and	then	creates	the	test	data	based	on	the	flow	and	logic	of	the	program.	This	type	of	testing	is	mainly	done	by	utilizing	the	internal	programming	logic	to	select	the	proper	test	data	and	to	remove	design	errors.The	glass	box	testing	is	called	open	box	testing,	logic-driven	testing,	path	driven	testing,	or	clear	box
testing.	The	techniques	of	glass	box	testing	are	Path	Coverage,	Branch	Coverage,	and	Statement	Coverage.7.	White	box	testing:	White	Box	Testing	is	also	called	as	Glass	Box,	Clear	Box,	and	Structural	Testing.	It	is	based	on	applications	internal	code	structure.	In	white-box	testing,	an	internal	perspective	of	the	system,	as	well	as	programming	skills,
are	used	to	design	test	cases.	This	testing	usually	was	done	at	the	unit	level.Click	here	for	more	details.8.	Specification-based	testing:	Specification-based	testing	is	similar	to	behavior-driven	testing	and	black-box	testing.	The	testers	perform	this	testing	by	viewing	the	application	as	a	black	box	and	they	do	not	have	any	understanding	of	the	internal
logic	or	the	flow	of	the	program.	Thus	in	short	the	testers	are	more	concerned	with	the	behavior	of	the	application.Specification-based	testing	includes	both	nonfunctional	and	functional	testing.	A	specification	may	be	in	the	form	of	a	prototype,	a	written	document,	a	group	of	use	cases.	It	is	considered	a	reference	for	building	test	data.	The	techniques
for	specification-based	testing	are	Decision	Table,	Equivalence	Partitioning,	Boundary	Value	Analysis,	and	State	Transitioning.9.	Structure-based	testing:The	structure-based	testing	requires	the	technical	know-how	of	the	program	logic	and	flow.	This	type	of	testing	ensures	that	there	is	maximum	test	coverage	and	test	design	is	proper.	The	structure-
based	testing	is	adopted	in	the	initial	phase	of	the	project	development	to	determine	the	amount	of	testing	that	is	needed.The	structure-based	testing	also	assists	in	creating	some	additional	test	cases	to	increase	the	test	coverage,	different	from	preexisting	test	cases.	So	it	achieves	more	depth	in	testing.	The	techniques	for	structure-based	testing	are
Path	testing,	Condition	Testing,	Multiple	Condition	Testing,	Decision	Testing,	and	Statement	Testing.10.	Gray	box	testing:	Grey	box	is	the	combination	of	both	White	Box	and	Black	Box	Testing.	The	tester	who	works	on	this	type	of	testing	needs	to	have	access	to	design	documents.	This	helps	to	create	better	test	cases	in	this	process.11.	Unit	testing:
Unit	Testing	is	also	called	Module	Testing	or	Component	Testing.	It	is	done	to	check	whether	the	individual	unit	or	module	of	the	source	code	is	working	properly.	It	is	done	by	the	developers	in	the	developer’s	environment.12.	Component	testing:	Refer	Unit	Testing13.	Module	testing:	Refer	Unit	Testing14.	Integration	testing:	Integration	Testing	is
the	process	of	testing	the	interface	between	the	two	software	units.	Integration	testing	is	done	by	multiple	approaches	such	as	Big	Bang	Approach,	Top-Down	Approach,	Bottom-Up	Approach,	and	Hybrid	Integration	approach.Integration	Testing	Complete	Guide15.	System	testing:	Testing	the	fully	integrated	application	to	evaluate	the	system’s
compliance	with	its	specified	requirements	is	called	System	Testing	AKA	End	to	End	testing.	Verifying	the	completed	system	to	ensure	that	the	application	works	as	intended	or	not.16.	Acceptance	testing:	It	is	also	known	as	pre-production	testing.		This	is	done	by	the	end-users	along	with	the	testers	to	validate	the	functionality	of	the	application.	After
successful	acceptance	testing.	Formal	testing	conducted	to	determine	whether	an	application	is	developed	as	per	the	requirement.	It	allows	the	customer	to	accept	or	reject	the	application.	Types	of	acceptance	testing	are	Alpha,	Beta	&	Gamma.17.	Big	bang	Integration	Testing:	Combining	all	the	modules	once	and	verifying	the	functionality	after
completion	of	individual	module	testing.Top-down	and	bottom-up	are	carried	out	by	using	dummy	modules	known	as	Stubs	and	Drivers.	These	Stubs	and	Drivers	are	used	to	stand-in	for	missing	components	to	simulate	data	communication	between	modules.18.	Top-down	Integration	Testing:	Testing	takes	place	from	top	to	bottom.	High-level	modules
are	tested	first	and	then	low-level	modules	and	finally	integrating	the	low-level	modules	to	a	high	level	to	ensure	the	system	is	working	as	intended.	Stubs	are	used	as	a	temporary	module	if	a	module	is	not	ready	for	integration	testing.19.	Bottom-up	Integration	Testing:	It	is	a	reciprocate	of	the	Top-Down	Approach.	Testing	takes	place	from	bottom	to
up.	Lowest	level	modules	are	tested	first	and	then	high-level	modules	and	finally	integrating	the	high-level	modules	to	a	low	level	to	ensure	the	system	is	working	as	intended.	Drivers	are	used	as	a	temporary	module	for	integration	testing.20.	Hybrid	Integration	Testing:	Hybrid	integration	testing	is	the	combination	of	both	Top-down	and	bottom-up
integration	testing.21.	Alpha	testing:	Alpha	testing	is	done	by	the	in-house	developers	(who	developed	the	software)	and	testers.	Sometimes	alpha	testing	is	done	by	the	client	or	outsourcing	team	with	the	presence	of	developers	or	testers.22.	Beta	testing:	Beta	testing	is	done	by	a	limited	number	of	end-users	before	delivery.	Usually,	it	is	done	in	the
client’s	place.23.	Gamma	Testing:	Gamma	testing	is	done	when	the	software	is	ready	for	release	with	specified	requirements.	It	is	done	at	the	client’s	place.	It	is	done	directly	by	skipping	all	the	in-house	testing	activities.24.	Equivalence	partitioning	testing:	Equivalence	Partitioning	is	also	known	as	Equivalence	Class	Partitioning.	In	equivalence
partitioning,	inputs	to	the	software	or	system	are	divided	into	groups	that	are	expected	to	exhibit	similar	behavior,	so	they	are	likely	to	be	proposed	in	the	same	way.	Hence	selecting	one	input	from	each	group	to	design	the	test	cases.Read	more	on	Equivalence	Partitioning	Testing	Technique…25.	Boundary	value	analysis	testing:	Boundary	value
analysis	(BVA)	is	based	on	testing	the	boundary	values	of	valid	and	invalid	partitions.	The	Behavior	at	the	edge	of	each	equivalence	partition	is	more	likely	to	be	incorrect	than	the	behavior	within	the	partition,	so	boundaries	are	an	area	where	testing	is	likely	to	yield	defects.	Every	partition	has	its	maximum	and	minimum	values	and	these	maximum
and	minimum	values	are	the	boundary	values	of	a	partition.	A	boundary	value	for	a	valid	partition	is	a	valid	boundary	value.	Similarly,	a	boundary	value	for	an	invalid	partition	is	an	invalid	boundary	value.Read	more	on	Boundary	Value	Analysis	Testing	Technique…26.	Decision	tables	testing:	Decision	Table	is	aka	Cause-Effect	Table.	This	test
technique	is	appropriate	for	functionalities	which	has	logical	relationships	between	inputs	(if-else	logic).	In	the	Decision	table	technique,	we	deal	with	combinations	of	inputs.	To	identify	the	test	cases	with	a	decision	table,	we	consider	conditions	and	actions.	We	take	conditions	as	inputs	and	actions	as	outputs.Read	more	on	the	Decision	Table	Testing
Technique…27.	Cause-effect	graph	testing:	The	cause-effect	graph	testing	is	a	test	case	development	methodology	that	begins	with	a	collection	of	requirements	and	then	identifies	the	optimal	number	of	test	cases	needed	to	achieve	maximum	coverage	with	minimum	time	and	cost.28.	State	transition	testing:	Using	state	transition	testing,	we	pick	test
cases	from	an	application	where	we	need	to	test	different	system	transitions.	We	can	apply	this	when	an	application	gives	a	different	output	for	the	same	input,	depending	on	what	has	happened	in	the	earlier	state.Read	more	on	State	Transition	Test	Design	Technique…29.	Exhaustive	Testing:	Testing	all	the	functionalities	using	all	valid	and	invalid
inputs	and	preconditions	is	known	as	Exhaustive	testing.30.	Early	Testing:	Defects	detected	in	the	early	phases	of	SDLC	are	less	expensive	to	fix.	So	conducting	early	testing	reduces	the	cost	of	fixing	defects.31.	Use	case	testing:	Use	case	testing	is	carried	out	with	the	help	of	a	use	case	document.	It	is	done	to	identify	test	scenarios	to	test	end	to	end
testing32.	Scenario	testing:	Scenario	testing	is	a	software	testing	technique	that	is	based	on	a	scenario.	It	involves	converting	business	requirements	to	test	scenarios	for	better	understanding	and	achieve	an	end	to	end	testing.	A	well-designed	scenario	should	be	motivating,	credible,	complex,	and	the	outcome	of	which	is	easy	to	evaluate.33.
Documentation	testing:	Documentation	testing	is	done	to	validate	the	documented	artifacts	such	as	requirements,	test	plan,	traceability	matrix,	test	cases.34.	Statement	coverage	testing:	Statement	coverage	testing	is	a	white	box	testing	technique	which	is	to	validate	whether	each	and	every	statement	in	the	code	is	executed	at	least	once.35.	Decision
coverage	testing/branch	coverage	testing:	Decision	coverage	or	branch	coverage	testing	is	a	white	box	testing	technique	which	is	to	validate	every	possible	branch	is	executed	at	least	once.36.	Path	testing:	Path	coverage	testing	is	a	white	box	testing	technique	which	is	to	validate	that	all	the	paths	of	the	program	are	executed	at	least	once.37.
Mutation	testing:	Mutation	testing	is	a	type	of	white	box	testing	which	is	to	change	(mutate)	certain	statements	in	the	source	code	and	verify	if	the	tests	are	able	to	find	the	errors.38.	Loop	testing:	Loop	testing	is	a	white	box	testing	technique	which	is	to	validate	a	different	kind	of	loops	such	as	simple	loops,	nested	loops,	concatenated	loops,	and
unstructured	loops.39.	Performance	testing:	This	type	of	testing	determines	or	validates	the	speed,	scalability,	and/or	stability	characteristics	of	the	system	or	application	under	test.	Performance	is	concerned	with	achieving	response	times,	throughput,	and	resource-utilization	levels	that	meet	the	performance	objectives	for	the	project	or	product.40.
Load	testing:	It	is	to	verify	that	the	system/application	can	handle	the	expected	number	of	transactions	and	to	verify	the	system/application	behavior	under	both	normal	and	peak	load	conditions.41.	Stress	testing:	It	is	to	verify	the	behavior	of	the	system	once	the	load	increases	more	than	its	design	expectations.42.	Soak	testing:	Running	a	system	at
high	load	for	a	prolonged	period	of	time	to	identify	the	performance	problems	is	called	Soak	Testing.43.	Endurance	testing:	Endurance	testing	is	a	kind	of	nonfunctional	testing.	It	is	also	called	soak	testing.	An	application	is	given	a	considerable	load	for	a	considerable	duration	to	check	its	behavior	and	performance	under	such	a	condition.44.	Stability
testing:	Stability	testing	is	a	testing	methodology	used	to	check	the	capacity	of	the	application	to	do	the	required	actions	under	a	specific	state	or	stress.	It	is	a	type	of	non-functional	testing	and	is	used	to	detect	performance	bugs.Stability	testing	is	sometimes	called	endurance	testing.	It	is	an	optional	testing	technique	used	to	verify	if	the	application
can	perform	uninterruptedly	for	a	specific	duration	of	time	with	a	significant	number	of	users	and	stress.	It	also	checks	memory	leaks	or	other	issues	that	degrade	the	stability	of	the	application.45.	Scalability	Testing:	Scalability	testing	is	a	type	of	non-functional	testing.	It	is	to	determine	how	the	application	under	test	scales	with	the	increasing
workload.46.	Volume	testing:	It	is	to	verify	that	the	system/application	can	handle	a	large	amount	of	data47.	Robustness	testing:	Robustness	testing	is	a	type	of	testing	that	is	performed	to	validate	the	robustness	of	the	application.48.	Vulnerability	testing:	Vulnerability	testing	is	the	process	of	identifying	the	vulnerabilities	or	weaknesses	in	the
application.49.	Adhoc	testing:	Ad-hoc	testing	is	quite	opposite	to	the	formal	testing.	It	is	an	informal	testing	type.	In	Adhoc	testing,	testers	randomly	test	the	application	without	following	any	documents	and	test	design	techniques.	This	testing	is	primarily	performed	if	the	knowledge	of	testers	in	the	application	under	test	is	very	high.	Testers	randomly
test	the	application	without	any	test	cases	or	any	business	requirement	document.50.	Exploratory	testing:	Usually,	this	process	will	be	carried	out	by	domain	experts.	They	perform	testing	just	by	exploring	the	functionalities	of	the	application	without	having	the	knowledge	of	the	requirements.51.	Retesting:	To	ensure	that	the	defects	which	were
found	and	posted	in	the	earlier	build	were	fixed	or	not	in	the	current	build.	Say,	Build	1.0	was	released.	The	test	team	found	some	defects	(Defect	Id	1.0.1,	1.0.2)	and	posted.	Build	1.1	was	released,	now	testing	the	defects	1.0.1	and	1.0.2	in	this	build	is	retesting.52.	Regression	testing:	Repeated	testing	of	an	already	tested	program,	after	modification,
to	discover	any	defects	introduced	or	uncovered	as	a	result	of	the	changes	in	the	software	being	tested	or	in	another	related	or	unrelated	software	components.53.	Smoke	testing:	Smoke	Testing	is	done	to	make	sure	if	the	build	we	received	from	the	development	team	is	testable	or	not.	It	is	also	called	as	“Day	0”	check.	It	is	done	at	the	“build	level”.	It
helps	not	to	waste	the	testing	time	to	simply	testing	the	whole	application	when	the	key	features	don’t	work	or	the	key	bugs	have	not	been	fixed	yet.54.	Sanity	testing:	Sanity	Testing	is	done	during	the	release	phase	to	check	for	the	main	functionalities	of	the	application	without	going	deeper.	It	is	also	called	as	a	subset	of	Regression	testing.	It	is	done
at	the	“release	level”.	At	times	due	to	release	time	constraints	rigorous	regression	testing	can’t	be	done	to	the	build,	sanity	testing	does	that	part	by	checking	main	functionalities.55.	Dynamic	testing:	Dynamic	testing	involves	the	execution	of	code.	It	validates	the	output	with	the	expected	outcome56.	Static	testing:	Static	Testing	involves	in	reviewing
the	documents	to	identify	the	defects	in	the	early	stages	of	SDLC.57.	Monkey	testing:	Perform	abnormal	action	on	the	application	deliberately	in	order	to	verify	the	stability	of	the	application.58.	Gorilla	testing:	Gorilla	testing	is	done	by	testers,	sometimes	developers	also	join	hands	with	testers.	It	involves	testing	a	system	repeatedly	to	test	the
robustness	of	the	system.59.	Usability	testing:	To	verify	whether	the	application	is	user-friendly	or	not	and	was	comfortably	used	by	an	end-user	or	not.	The	main	focus	of	this	testing	is	to	check	whether	the	end-user	can	understand	and	operate	the	application	easily	or	not.	An	application	should	be	self-exploratory	and	must	not	require	training	to
operate	it.60.	Accessibility	testing:	Accessibility	testing	is	a	subset	of	usability	testing.	It	aims	to	discover	how	easily	people	with	disabilities	(such	as	visual	Impairments,	Physical	Impairment,	Hearing	Impairment,	Cognitive	Impairment,	Learning	Impairment)	can	use	a	system.61.	Compatibility	testing:	It	is	to	deploy	and	check	whether	the	application
is	working	as	expected	in	a	different	combination	of	environmental	components.62.	Configuration	testing:	Configuration	testing	is	the	process	of	testing	an	application	with	each	one	of	the	supported	hardware	and	software	configurations	to	find	out	whether	the	application	can	work	without	any	issues.63.	Localization	testing:	Localization	is	a	process
of	adapting	globalization	software	for	a	specific	region	or	language	by	adding	local	specific	components.64.	Globalization	testing:	Globalization	is	a	process	of	designing	a	software	application	so	that	it	can	be	adapted	to	various	languages	and	regions	without	any	changes.65.	Internationalization	testing–	Refer	Globalization	testing66.	Positive	Testing:
It	is	to	determine	what	system	supposed	to	do.	It	helps	to	check	whether	the	application	is	justifying	the	requirements	or	not.67.	Negative	testing:	It	is	to	determine	what	system	not	supposed	to	do.	It	helps	to	find	the	defects	from	the	software.68.	Security	testing:	Security	testing	is	a	process	to	determine	whether	the	system	protects	data	and
maintains	functionality	as	intended.Security	Testing	Complete	Guide69.	Penetration	testing:	Penetration	testing	is	also	known	as	pen	testing.	It	is	a	type	of	security	testing.	It	is	performed	to	evaluate	the	security	of	the	system.Penetration	Testing	Complete	Guide70.	Database	testing:	Database	testing	is	done	to	validate	the	data	in	the	UI	is	matched
with	the	data	stored	in	the	database.	It	involves	in	checking	the	schema,	tables,	triggers	etc.,	of	the	database.71.	Bucket	Testing:	Bucket	testing	is	a	method	to	compare	two	versions	of	an	application	against	each	other	to	determine	which	one	performs	better.72.	A/B	testing:	Refer	Bucket	Testing…73.	Split	testing–	Refer	bucket	testing…74.	Reliability
Testing:	Perform	testing	on	the	application	continuously	for	a	long	period	of	time	in	order	to	verify	the	stability	of	the	application75.	Interface	Testing:	Interface	testing	is	performed	to	evaluate	whether	two	intended	modules	pass	data	and	communicate	correctly	to	one	another.76.	Concurrency	testing:	Concurrency	testing	means	accessing	the
application	at	the	same	time	by	multiple	users	to	ensure	the	stability	of	the	system.	This	is	mainly	used	to	identify	deadlock	issues.77.	Fuzz	testing:	Fuzz	testing	is	used	to	identify	coding	errors	and	security	loopholes	in	an	application.	By	inputting	a	massive	amount	of	random	data	to	the	system	in	an	attempt	to	make	it	crash	to	identify	if	anything
breaks	in	the	application.78.	GUI	Testing:	Graphical	User	Interface	Testing	is	to	test	the	interface	between	the	application	and	the	end	user.	Mainly	testers	concern	about	the	appearance	of	the	elements	such	as	fonts	and	colors	conforms	to	design	specifications.79.	API	testing:	API	stands	for	Application	Programming	Interface.	API	testing	is	a	type	of
software	testing	that	involves	testing	APIs	using	some	tools	like	SOAPUI,	PostMan.80.	Agile	testing:	Agile	testing	is	a	type	of	testing	that	involves	following	principles	of	agile	software	development	methodology.	In	this	agile	testing,	testing	is	conducted	throughout	the	lifecycle	of	the	continuously	evolving	project	instead	of	being	confined	to	a
particular	phase.81.	End	to	end	testing:	The	end	to	end	testing	is	a	testing	methodology	to	check	if	the	flow	of	the	software	from	beginning	till	the	end	is	as	per	the	expected	result.	It	helps	to	determine	the	dependencies	in	the	system	and	ensures	there	is	no	data	loss	or	corruption	while	the	interaction	between	multiple	components.While	doing	end	to
end	testing,	the	key	features	like	interaction	among	the	database,	other	systems,	network,	and	so	on	are	tested	and	verified	if	they	are	happening	as	per	expected	results.82.	Recovery	testing:	Recovery	testing	is	performed	in	order	to	determine	how	quickly	the	system	can	recover	after	the	system	crash	or	hardware	failure.	It	comes	under	the	type	of
non-functional	testing.83.	Risk-based	testing:	Identify	the	modules	or	functionalities	which	are	most	likely	cause	failures	and	then	testing	those	functionalities.84.	Installation	testing:	It	is	to	check	whether	the	application	is	successfully	installed	and	it	is	working	as	expected	after	installation.85.	Formal	Testing:	It	is	a	process	where	the	testers	test	the
application	by	having	pre-planned	procedures	and	proper	documentation.86.	Pilot	testing:	Pilot	testing	is	testing	carried	out	under	a	real-time	operating	condition	by	the	company	in	order	to	gain	the	confidence	of	the	client87.	Backend	testing:	Backend	testing	is	a	testing	technique	for	the	database	and	server-side	validation.	It	is	often	known	as
database	testing.	It	is	done	to	test	if	the	entered	data	in	the	front	end	is	stored	and	reflected	in	the	database.	The	backend	testing	is	used	to	prevent	data	truncation	and	loss.The	database	testing	can	be	nonfunctional	[which	deals	with	the	performance	of	the	database],	functional	[which	deals	with	application	characteristics	from	the	backend]	and
structural	[which	deals	with	the	testing	of	the	database	structure	like	tables,	views,	and	so	on].	Thus	the	backend	testing	deals	with	the	back	end	items	which	are	not	viewable	from	the	front	end.88.	Cross-browser	testing:	Cross	Browser	Testing	is	a	type	of	non-functional	test	which	helps	us	to	ensure	that	our	website	or	web	application	works	as
expected	in	various	web	browsers.Read	more	on	Cross	Browser	Testing…89.	Browser	compatibility	testing:	The	browser	compatibility	testing	is	an	important	part	of	the	testing	phase.	It	is	done	to	verify	the	application	in	multiple	web	browsers.	There	must	be	sufficient	resources	allocated	to	carry	out	this	testing.The	most	essential	points	to	check	in
a	browser	compatibility	testing	are	the	font	look	and	feel	in	browsers,	header	and	footer,	styles	of	the	page,	formats	in	date,	image	positioning,	HTML	and	CSS	validation,	zoom	in	and	zoom	out	and	alignment	of	the	elements	on	the	page	and	so	on.90.	Forward	compatibility	testing:	Forward	compatibility	testing	is	to	validate	the	application	under	test
is	working	as	intended	in	the	later	versions	of	the	software’s	current	version.91.	Backward	compatibility	testing:	Backward	compatibility	testing	is	to	validate	the	application	under	test	is	working	as	intended	in	the	earlier	versions	of	the	software’s	current	version.92.	Downward	compatibility	testing:	Refer	to	Backward	compatibility	testing…93.
Compliance	testing:	Compliance	testing	is	non-functional	testing	which	is	done	to	validate	whether	the	software	meets	a	defined	set	of	standards.94.	Conformance	testing:	Conformance	testing	is	a	testing	technique	to	check	that	a	product	meets	certain	standards	before	its	release.	These	standards	are	defined	by	organizations	like	IEEE	to	ensure	that
the	software	is	compliant.The	conformance	testing	features	include	the	below	points:It	is	carried	out	by	external	organizations	that	are	certified	in	their	domain.It	checks	the	robust	testing	process.It	carries	out	testing	with	approved	testing	processes.95.	UI	testing:	In	UI	testing,	testers	aim	to	test	both	GUI	and	Command	Line	Interfaces	(CLIs)Also,
refer	to	GUI	Testing…96.	Destructive	testing:	Destructive	testing	is	a	testing	technique	that	aims	to	validate	the	robustness	of	the	application	by	testing	continues	until	the	application	breaks.97.	Dependency	testing:	Dependency	testing	is	a	testing	technique	that	examines	the	requirements	of	an	application	for	pre-conditions,	initial	states,	and
configuration	for	the	proper	functioning	of	the	application.98.	Crowdsourced	testing:	Crowdsourced	testing	is	carried	out	by	a	community	of	expert	quality	assurance	testers	through	an	online	platform.99.	ETL	testing:	ETL	(Extract,	Transform,	and	Load)	testing	involves	invalidating	the	data	movement	from	source	to	destination	and	verifying	the	data
count	in	both	source	and	destination	and	verifying	data	extraction,	transformation,	and	also	verifying	the	table	relations.100.	Data	warehouse	testing:	Refer	to	ETL	testing…101.	Fault	injection	testing:	Fault	injection	testing	is	a	testing	technique	in	which	fault	is	intentionally	introduced	in	the	code	in	order	to	improve	the	test	coverage.102.	Failover
testing:	Failover	testing	is	a	testing	technique	that	validates	a	system’s	ability	to	be	able	to	allocate	extra	resource	during	the	server	failure	and	transferring	of	the	processing	part	to	back-up	systems103.	All	pair	testing:	All	pair	testing	approach	is	to	test	the	application	with	all	possible	combination	of	the	values	of	input	parameters.104.	Pairwise
Testing:	The	pairwise	testing	is	a	testing	method	to	test	an	application	with	permutation	and	combination	of	parameters.	It	is	done	to	test	all	the	feasible	discrete	combinations	of	specifications.	By	using	the	normal	exhaustive	testing	approach,	it	may	become	impossible	to	test	the	complete	product.	But	by	following	the	permutation	and	combination
of	inputs,	the	testing	of	the	product	is	achievable.For	example,	let	us	consider	a	product	to	be	tested	with	15	inputs	and	there	are	15	possible	configurations	for	each	input.	So	there	are	a	total	15^15	inputs	to	be	tested.	In	such	a	scenario,	complete	testing	is	not	possible	and	we	have	to	choose	combinations	of	inputs.Here	I	am	going	to	conclude
different	types	of	software	testing	types.	If	you	like	this	post,	please	share	it	with	your	friends.Here	I	have	hand-picked	a	few	posts	which	will	help	you	to	learn	more	interview	related	stuff:If	you	have	any	more	questions,	feel	free	to	ask	via	comments.	If	you	find	this	post	useful,	do	share	it	with	your	friends	on	Social	Networking.	Software	Testing	is	an
important	part	of	the	Software	Development	Lifecycle,	which	includes	many	more	Types	of	Software	Testing	that	we	are	discussing	here	in	detail.	Read	More:	Software	Development	Life	Cycle.Principles	of	Software	Testing	Software	Testing	always	aligns	with	the	Customer's	Requirement,	which	they	want.	Software	testing	is	an	important	process
that	is	used	for	the	enhancement	of	the	Software	Quality	and	Reliability	of	the	application.	It	is	important	to	understand	the	key	principle	of	software	testing,	which	guides	you	throughout	the	process	of	Software	Development.	These	principles	will	be	helpful	for	the	tester	to	identify	the	software	issue	earlier	and	verify	the	Software	meets	to	the
expectations.Testing	Shows	the	Presence	of	DefectsExhaustive	Testing	is	Not	PossibleEarly	TestingDefect	ClusteringPesticide	ParadoxTesting	is	Context-DependentAbsence	of	Errors	FallacyRead	more:	Software	Testing	principle.Different	Types	of	Software	TestingHere	are	the	Types	of	Software	Testing	mainly	categorized	into	the	two	domain,	which
are	below.	Types	of	Software	Testing	1.	Manual	Testing	Manual	testing	is	a	technique	to	test	the	software	that	is	carried	out	using	the	functions	and	features	of	an	application.	Which	means	manual	testing	will	be	check	the	defect	manually	with	trying	one	by	one	function	is	working	as	expected.Advantages	of	Manual	Testing:Fast	and	accurate	visual
feedback:	It	detects	almost	every	bug	in	the	software	application	and	is	used	to	test	the	dynamically	changing	GUI	designs	like	layout,	text,	etc.Less	expensive:	It	is	less	expensive	as	it	does	not	require	any	high-level	skill	or	a	specific	type	of	tool.No	coding	is	required:	No	programming	knowledge	is	required	while	using	the	black	box	testing	method.
It	is	easy	to	learn	for	the	new	testers.Efficient	for	unplanned	changes:	Manual	testing	is	suitable	in	case	of	unplanned	changes	to	the	application,	as	it	can	be	adopted	easily.2.	Automation	Testing	Automated	Testing	is	a	technique	where	the	Tester	writes	scripts	independently	and	uses	suitable	Software	or	Automation	Tools	to	test	the	software.	It	is	an
Automation	Process	of	a	Manual	Process.	It	allows	for	executing	repetitive	tasks	without	the	use	of	a	Manual	Tester.Advantages	of	Automation	Testing:	Simplifies	Test	Case	Execution:	Automation	testing	can	be	left	virtually	unattended	and	thus	it	allows	monitoring	of	the	results	at	the	end	of	the	process.	Thus,	simplifying	the	overall	test	execution
and	increasing	the	efficiency	of	the	application.Improves	Reliability	of	Tests:	Automation	testing	ensures	that	there	is	equal	focus	on	all	the	areas	of	the	testing,	thus	ensuring	the	best	quality	end	product.Increases	amount	of	test	coverage:	Using	automation	testing,	more	test	cases	can	be	created	and	executed	for	the	application	under	test.	Thus,
resulting	in	higher	test	coverage	and	the	detection	of	more	bugs.	This	allows	for	the	testing	of	more	complex	applications	and	more	features	can	be	tested.Minimizing	Human	Interaction:	In	automation	testing,	everything	is	automated	from	test	case	creation	to	execution	thus	there	are	no	changes	for	human	error	due	to	neglect.	This	reduces	the
necessity	for	fixing	glitches	in	the	post-release	phase.Manual	vs.	Automated	testingHere	is	the	table	of	comparing	Manual	Testing	and	Automated	Testing:ParametersManual	TestingAutomation	TestingDefinitionIn	manual	testing,	the	test	cases	are	executed	by	the	human	tester.In	automated	testing,	the	test	cases	are	executed	by	the	software
tools.Processing	TimeManual	testing	is	time-consuming.Automation	testing	is	faster	than	manual	testing.Resources	requirementManual	testing	takes	up	human	resources.Automation	testing	takes	up	automation	tools	and	trained	employees.Exploratory	testingExploratory	testing	is	possible	in	manual	testing.Exploratory	testing	is	not	possible	in
automation	testing.Framework	requirementManual	testing	doesn’t	use	frameworks.Automation	testing	uses	frameworks	like	Data	Drive,	Keyword,	etc.Types	of	Manual	Testing	1.	White	Box	Testing	White	Box	Testing	is	a	software	testing	technique	that	involves	testing	the	internal	structure	and	workings	of	a	software	application.	The	tester	has	access
to	the	source	code	and	uses	this	knowledge	to	design	test	cases	that	can	verify	the	correctness	of	the	software	at	the	code	level.	Advantages	of	White	box	Testing:	Thorough	Testing:	White	box	testing	is	thorough	as	the	entire	code	and	structures	are	tested.	Code	Optimization:	It	results	in	the	optimization	of	code	removing	errors	and	helps	in
removing	extra	lines	of	code.	Early	Detection	of	Defects:	It	can	start	at	an	earlier	stage	as	it	doesn’t	require	any	interface	as	in	the	case	of	black	box	testing.	Integration	with	SDLC:	White	box	testing	can	be	easily	started	in	the	Software	Development	Life	Cycle.	Detection	of	Complex	Defects:	Testers	can	identify	defects	that	cannot	be	detected
through	other	testing	techniques.	2.	Black	Box	Testing	Black-box	testing	is	a	type	of	software	testing	in	which	the	tester	is	not	concerned	with	the	internal	knowledge	or	implementation	details	of	the	software	but	rather	focuses	on	validating	the	functionality	based	on	the	provided	specifications	or	requirements.	Advantages	of	Black	Box	Testing:	The
tester	does	not	need	to	have	more	functional	knowledge	or	programming	skills	to	implement	the	Black	Box	Testing.	It	is	efficient	for	implementing	the	tests	in	the	larger	system.	Tests	are	executed	from	the	user’s	or	client’s	point	of	view.	Test	cases	are	easily	reproducible.	It	is	used	to	find	the	ambiguity	and	contradictions	in	the	functional
specifications.	3.	Gray	Box	Testing	Gray	Box	Testing	is	a	software	testing	technique	that	is	a	combination	of	the	Black	Box	Testing	technique	and	the	White	Box	Testing	technique.	In	the	Black	Box	Testing	technique,	the	tester	is	unaware	of	the	internal	structure	of	the	item	being	tested	and	in	White	Box	Testing	the	internal	structure	is	known	to	the
tester.	The	internal	structure	is	partially	known	in	Gray	Box	Testing.	This	includes	access	to	internal	data	structures	and	algorithms	to	design	the	test	cases.	Advantages	of	Gray	Box	Testing:	Clarity	of	goals:	Users	and	developers	have	clear	goals	while	doing	testing.	Done	from	a	user	perspective:	Gray	box	testing	is	mostly	done	from	the	user
perspective.	High	programming	skills	not	required:	Testers	are	not	required	to	have	high	programming	skills	for	this	testing.	Non-intrusive:	Gray	box	testing	is	non-intrusive.	Improved	product	quality:	Overall	quality	of	the	product	is	improved.	Types	of	Black	Box	Testing	1.	Functional	Testing	Functional	Testing	is	a	type	of	Software	Testing	in	which
the	system	is	tested	against	the	functional	requirements	and	specifications.	Functional	testing	ensures	that	the	requirements	or	specifications	are	properly	satisfied	by	the	application.	This	type	of	testing	is	particularly	concerned	with	the	result	of	processing.	It	focuses	on	the	simulation	of	actual	system	usage	but	does	not	develop	any	system
structure	assumptions.	The	article	focuses	on	discussing	function	testing.	Advantages	of	Functional	Testing:	Bug-free	product:	Functional	testing	ensures	the	delivery	of	a	bug-free	and	high-quality	product.	Customer	satisfaction:	It	ensures	that	all	requirements	are	met	and	ensures	that	the	customer	is	satisfied.	Testing	focused	on	specifications:



Functional	testing	is	focused	on	specifications	as	per	customer	usage.	Proper	working	of	application:	This	ensures	that	the	application	works	as	expected	and	ensures	proper	working	of	all	the	functionality	of	the	application.	Improves	quality	of	the	product:	Functional	testing	ensures	the	security	and	safety	of	the	product	and	improves	the	quality	of
the	product.	2.	Non-Functional	Testing	Non-Functional	Testing	is	a	type	of	Software	Testing	that	is	performed	to	verify	the	non-functional	requirements	of	the	application.	It	verifies	whether	the	behavior	of	the	system	is	as	per	the	requirement	or	not.	It	tests	all	the	aspects	that	are	not	tested	in	functional	testing.	Non-functional	testing	is	a	software
testing	technique	that	checks	the	non-functional	attributes	of	the	system.	Non-functional	testing	is	defined	as	a	type	of	software	testing	to	check	non-functional	aspects	of	a	software	application.	It	is	designed	to	test	the	readiness	of	a	system	as	per	nonfunctional	parameters	which	are	never	addressed	by	functional	testing.	Non-functional	testing	is	as
important	as	functional	testing.	Advantages	of	Non-functional	Testing:	Improved	performance:	Non-functional	testing	checks	the	performance	of	the	system	and	determines	the	performance	bottlenecks	that	can	affect	the	performance.	Less	time-consuming:	Non-functional	testing	is	overall	less	time-consuming	than	the	other	testing	process.	Improves
user	experience:	Non-functional	testing	like	Usability	testing	checks	how	easily	usable	and	user-friendly	the	software	is	for	the	users.	Thus,	focus	on	improving	the	overall	user	experience	for	the	application.	More	secure	product:	As	non-functional	testing	specifically	includes	security	testing	that	checks	the	security	bottlenecks	of	the	application	and
how	secure	is	the	application	against	attacks	from	internal	and	external	sources.	Types	of	Functional	Testing	1.	Unit	Testing	Unit	testing	is	a	method	of	testing	individual	units	or	components	of	a	software	application.	It	is	typically	done	by	developers	and	is	used	to	ensure	that	the	individual	units	of	the	software	are	working	as	intended.	Unit	tests	are
usually	automated	and	are	designed	to	test	specific	parts	of	the	code,	such	as	a	particular	function	or	method.	Unit	testing	is	done	at	the	lowest	level	of	the	software	development	process	,	where	individual	units	of	code	are	tested	in	isolation.	Note:	Unit	Testing	basically	Included	in	both	White	Box	Testing	and	Black	Box	Testing.	Advantages	of	Unit
Testing:	Some	of	the	advantages	of	Unit	Testing	are	listed	below.	It	helps	to	identify	bugs	early	in	the	development	process	before	they	become	more	difficult	and	expensive	to	fix.	It	helps	to	ensure	that	changes	to	the	code	do	not	introduce	new	bugs.	It	makes	the	code	more	modular	and	easier	to	understand	and	maintain.	It	helps	to	improve	the
overall	quality	and	reliability	of	the	software.	Note:	Some	popular	frameworks	and	tools	that	are	used	for	unit	testing	include	JUnit	,	NUnit,	and	xUnit.	It's	important	to	keep	in	mind	that	Unit	Testing	is	only	one	aspect	of	software	testing	and	it	should	be	used	in	combination	with	other	types	of	testing	such	as	integration	testing,	functional	testing,	and
acceptance	testing	to	ensure	that	the	software	meets	the	needs	of	its	users.	It	focuses	on	the	smallest	unit	of	software	design.	In	this,	we	test	an	individual	unit	or	group	of	interrelated	units.	It	is	often	done	by	the	programmer	by	using	sample	input	and	observing	its	corresponding	outputs.	Example:	In	a	program	we	are	checking	if	the	loop,	method,
or	function	is	working	fine.	Misunderstood	or	incorrect,	arithmetic	precedence.	Incorrect	initialization.	2.	Integration	Testing	Integration	testing	is	a	method	of	testing	how	different	units	or	components	of	a	software	application	interact	with	each	other.	It	is	used	to	identify	and	resolve	any	issues	that	may	arise	when	different	units	of	the	software	are
combined.	Integration	testing	is	typically	done	after	unit	testing	and	before	functional	testing	and	is	used	to	verify	that	the	different	units	of	the	software	work	together	as	intended.	Different	Ways	of	Performing	Integration	Testing:	Different	ways	of	Integration	Testing	are	discussed	below.	Top-down	integration	testing:	It	starts	with	the	highest-level
modules	and	differentiates	them	from	lower-level	modules.	Bottom-up	integration	testing:	It	starts	with	the	lowest-level	modules	and	integrates	them	with	higher-level	modules.	Big-Bang	integration	testing:	It	combines	all	the	modules	and	integrates	them	all	at	once.	Incremental	integration	testing:	It	integrates	the	modules	in	small	groups,	testing
each	group	as	it	is	added.	Advantages	of	Integrating	Testing:	It	helps	to	identify	and	resolve	issues	that	may	arise	when	different	units	of	the	software	are	combined.	It	helps	to	ensure	that	the	different	units	of	the	software	work	together	as	intended.	It	helps	to	improve	the	overall	reliability	and	stability	of	the	software.	It's	important	to	keep	in	mind
that	Integration	testing	is	essential	for	complex	systems	where	different	components	are	integrated.	As	with	unit	testing,	integration	testing	is	only	one	aspect	of	software	testing	and	it	should	be	used	in	combination	with	other	types	of	testing	such	as	unit	testing,	functional	testing,	and	acceptance	testing	to	ensure	that	the	software	meets	the	needs
of	its	users.	The	objective	is	to	take	unit-tested	components	and	build	a	program	structure	that	has	been	dictated	by	design.	Integration	testing	is	testing	in	which	a	group	of	components	is	combined	to	produce	output.	Integration	testing	is	of	four	types:	(i)	Top-down	(ii)	Bottom-up	(iii)	Sandwich	(iv)	Big-Bang	Example:	Black	Box	testing:	It	is	used	for
validation.	In	this,	we	ignore	internal	working	mechanisms	and	focus	on	"what	is	the	output?"	White	box	testing:	It	is	used	for	verification.	In	this,	we	focus	on	internal	mechanisms	i.e.	how	the	output	is	achieved.	3.	System	Testing	System	testing	is	a	type	of	software	testing	that	evaluates	the	overall	functionality	and	performance	of	a	complete	and
fully	integrated	software	solution.	It	tests	if	the	system	meets	the	specified	requirements	and	if	it	is	suitable	for	delivery	to	the	end-users.	This	type	of	testing	is	performed	after	the	integration	testing	and	before	the	acceptance	testing.	System	Testing	is	a	type	of	software	testing	that	is	performed	on	a	completely	integrated	system	to	evaluate	the
compliance	of	the	system	with	the	corresponding	requirements.	In	system	testing,	integration	testing	passed	components	are	taken	as	input.	The	goal	of	integration	testing	is	to	detect	any	irregularity	between	the	units	that	are	integrated.	Advantages	of	System	Testing:	The	testers	do	not	require	more	knowledge	of	programming	to	carry	out	this
testing.	It	will	test	the	entire	product	or	software	so	that	we	will	easily	detect	the	errors	or	defects	that	cannot	be	identified	during	the	unit	testing	and	integration	testing.	The	testing	environment	is	similar	to	that	of	the	real-time	production	or	business	environment.	It	checks	the	entire	functionality	of	the	system	with	different	test	scripts	and	also	it
covers	the	technical	and	business	requirements	of	clients.	After	this	testing,	the	product	will	almost	cover	all	the	possible	bugs	or	errors	and	hence	the	development	team	will	confidently	go	ahead	with	acceptance	testing.	4.	End-to-end	Testing	End-to-end	testing	is	the	type	of	software	testing	used	to	test	entire	software	from	starting	to	the	end	along
with	its	integration	with	external	interfaces.	The	main	purpose	of	end-to-end	testing	is	to	identify	system	dependencies	and	to	make	sure	that	the	data	integrity	and	communication	with	other	systems,	interfaces	and	databases	to	exercise	complete	production.5.	Acceptance	TestingAcceptance	Testing	is	formal	testing	according	to	user	needs,
requirements,	and	business	processes	conducted	to	determine	whether	a	system	satisfies	the	acceptance	criteria	or	not	and	to	enable	the	users,	customers,	or	other	authorized	entities	to	determine	whether	to	accept	the	system	or	not.Advantages	of	Acceptance	Testing:This	testing	helps	the	project	team	to	know	the	further	requirements	from	the
users	directly	as	it	involves	the	users	for	testing.Automated	test	execution.It	brings	confidence	and	satisfaction	to	the	clients	as	they	are	directly	involved	in	the	testing	process.It	is	easier	for	the	user	to	describe	their	requirement.It	covers	only	the	Black-Box	testing	process	and	hence	the	entire	functionality	of	the	product	will	be	tested.Types	of
Integration	Testing	Here	are	the	Types	of	Integration	testing:	1.	Incremental	Testing	In	Incremental	Testing	Like	development,	testing	is	also	a	phase	of	SDLC	(Software	Development	Life	Cycle).	Different	tests	are	performed	at	different	stages	of	the	development	cycle.	Incremental	testing	is	one	of	the	testing	approaches	that	is	commonly	used	in	the
software	field	during	the	testing	phase	of	integration	testing	which	is	performed	after	unit	testing.	Several	stubs	and	drivers	are	used	to	test	the	modules	one	after	one	which	helps	in	discovering	errors	and	defects	in	the	specific	modules.	Advantages	of	Incremental	Testing:	Each	module	has	its	specific	significance.	Each	one	gets	a	role	to	play	during
the	testing	as	they	are	incremented	individually.	Defects	are	detected	in	smaller	modules	rather	than	denoting	errors	and	then	editing	and	re-correcting	large	files.	It’s	more	flexible	and	cost-efficient	as	per	requirements	and	scopes.	The	customer	gets	the	chance	to	respond	to	each	building.There	are	2	Types	of	Incremental	Testing	1.	Top-down
Integration	Testing	Top-down	Integration	Testing	is	a	type	of	incremental	integration	testing	approach	in	which	testing	is	done	by	integrating	or	joining	two	or	more	modules	by	moving	down	from	top	to	bottom	through	the	control	flow	of	the	architecture	structure.	In	these,	high-level	modules	are	tested	first,	and	then	low-level	modules	are	tested.
Then,	finally,	integration	is	done	to	ensure	that	the	system	is	working	properly.	Stubs	and	drivers	are	used	to	carry	out	this	project.	This	technique	is	used	to	increase	or	stimulate	the	behavior	of	Modules	that	are	not	integrated	into	a	lower	level.	Advantages	Top	Down	Integration	Testing:	There	is	no	need	to	write	drivers.	Interface	errors	are
identified	at	an	early	stage	and	fault	localization	is	also	easier.	Low-level	utilities	that	are	not	important	are	not	tested	well	and	high-level	testers	are	tested	well	in	an	appropriate	manner.	Representation	of	test	cases	is	easier	and	simpler	once	Input-Output	functions	are	added.	Bottom-up	Integration	Testing	is	a	type	of	incremental	integration	testing
approach	in	which	testing	is	done	by	integrating	or	joining	two	or	more	modules	by	moving	upward	from	bottom	to	top	through	the	control	flow	of	the	architecture	structure.	In	these,	low-level	modules	are	tested	first,	and	then	high-level	modules	are	tested.	This	type	of	testing	or	approach	is	also	known	as	inductive	reasoning	and	is	used	as	a
synthesis	synonym	in	many	cases.	Bottom-up	testing	is	user-friendly	testing	and	results	in	an	increase	in	overall	software	development.	This	testing	results	in	high	success	rates	with	long-lasting	results.	It	is	easy	and	simple	to	create	and	develop	test	conditions.	It	is	also	easy	to	observe	test	results.	It	is	not	necessary	to	know	about	the	details	of	the
structural	design.	Low-level	utilities	are	also	tested	well	and	are	also	compatible	with	the	object-oriented	structure.Types	of	Non-functional	Testing	Here	are	the	Types	of	Non-Functional	Testing1.	Performance	Testing	Performance	Testing	is	a	type	of	software	testing	that	ensures	software	applications	perform	properly	under	their	expected	workload.
It	is	a	testing	technique	carried	out	to	determine	system	performance	in	terms	of	sensitivity,	reactivity,	and	stability	under	a	particular	workload.	Advantages	of	Performance	Testing:Performance	testing	ensures	the	speed,	load	capability,	accuracy,	and	other	performances	of	the	system.	It	identifies,	monitors,	and	resolves	the	issues	if	anything
occurs.	It	ensures	the	great	optimization	of	the	software	and	also	allows	many	users	to	use	it	at	the	same	time.	It	ensures	the	client	as	well	as	the	end-customer’s	satisfaction.	Performance	testing	has	several	advantages	that	make	it	an	important	aspect	of	software	testing:	Identifying	bottlenecks	:	Performance	testing	helps	identify	bottlenecks	in	the
system	such	as	slow	database	queries,	insufficient	memory,	or	network	congestion.	This	helps	developers	optimize	the	system	and	ensure	that	it	can	handle	the	expected	number	of	users	or	transactions.	2.	Usability	Testing	Usability	Testing	in	software	testing	is	a	type	of	testing,	that	is	done	from	an	end	user’s	perspective	to	determine	if	the	system	is
easily	usable.	Usability	testing	is	generally	the	practice	of	testing	how	easy	a	design	is	to	use	on	a	group	of	representative	users.	Several	tests	are	performed	on	a	product	before	deploying	it.	Advantages	and	Disadvantages	of	Usability	Testing:Usability	testing	is	preferred	to	evaluate	a	product	or	service	by	testing	it	with	the	proper	users.	In	Usability
testing,	the	development	and	design	teams	will	use	to	identify	issues	before	coding	and	the	result	will	be	earlier	issues	will	be	solved.	User-Centric	Design:	By	involving	actual	users	in	the	testing	process,	you	ensure	that	your	product	or	website	is	designed	with	their	needs	and	preferences	in	mind.Identifying	User	Pain	Points:	Usability	testing	helps
uncover	areas	where	users	struggle	or	encounter	difficulties	while	interacting	with	your	product.	This	insight	allows	you	to	address	these	pain	points	and	improve	the	overall	user	experience.Optimizing	User	Interface:	Through	usability	testing,	you	can	evaluate	the	effectiveness	of	your	user	interface	(UI)	design,	including	layout,	navigation,	and
interactive	elements.	This	enables	you	to	refine	and	optimize	the	UI	for	better	usability.Enhancing	User	Satisfaction:	By	addressing	usability	issues	and	making	improvements	based	on	user	feedback,	you	can	enhance	user	satisfaction	and	loyalty,	leading	to	increased	engagement	and	retention.3.	Compatibility	Testing	Compatibility	Testing	is	software
testing	that	comes	under	the	non	functional	testing	category,	and	it	is	performed	on	an	application	to	check	its	compatibility	(running	capability)	on	different	platforms/environments.	This	testing	is	done	only	when	the	application	becomes	stable.	This	means	simply	this	compatibility	test	aims	to	check	the	developed	software	application	functionality
on	various	software,	hardware	platforms,	networks	browser	etc.	This	compatibility	testing	is	very	important	in	product	production	and	implementation	point	of	view	as	it	is	performed	to	avoid	future	issues	regarding	compatibility.	Advantages	of	Compatibility	Testing:It	ensures	complete	customer	satisfaction.	It	provides	service	across	multiple
platforms.	Identifying	bugs	during	the	development	process.	Types	of	Performance	Testing	Here	are	the	Types	of	Performance	testing:1.	Load	Testing	Load	Testing	determines	the	behavior	of	the	application	when	multiple	users	use	it	at	the	same	time.	It	is	the	response	of	the	system	measured	under	varying	load	conditions.	The	load	testing	is	carried
out	for	normal	and	extreme	load	conditions.	Load	testing	is	a	type	of	performance	testing	that	simulates	a	real-world	load	on	a	system	or	application	to	see	how	it	performs	under	stress.	The	goal	of	load	testing	is	to	identify	bottlenecks	and	determine	the	maximum	number	of	users	or	transactions	the	system	can	handle.	It	is	an	important	aspect	of
software	testing	as	it	helps	ensure	that	the	system	can	handle	the	expected	usage	levels	and	identify	any	potential	issues	before	the	system	is	deployed	to	production.	Advantages	of	Load	Testing:Load	testing	has	several	advantages	that	make	it	an	important	aspect	of	software	testing:	Identifying	bottlenecks:	Load	testing	helps	identify	bottlenecks	in
the	system	such	as	slow	database	queries,	insufficient	memory,	or	network	congestion.	This	helps	developers	optimize	the	system	and	ensure	that	it	can	handle	the	expected	number	of	users	or	transactions.	Improved	scalability:	By	identifying	the	system’s	maximum	capacity,	load	testing	helps	ensure	that	the	system	can	handle	an	increasing	number
of	users	or	transactions	over	time.	This	is	particularly	important	for	web-based	systems	and	applications	that	are	expected	to	handle	a	high	volume	of	traffic.	Improved	reliability:	Load	testing	helps	identify	any	potential	issues	that	may	occur	under	heavy	load	conditions,	such	as	increased	error	rates	or	slow	response	times.	This	helps	ensure	that	the
system	is	reliable	and	stable	when	it	is	deployed	to	production.	2.	Stress	Testing	Stress	Testing	is	defined	as	types	of	software	testing	that	verifies	the	stability	and	reliability	of	the	system.	This	test	particularly	determines	the	system’s	robustness	and	error	handling	under	the	burden	of	some	load	conditions.	It	tests	beyond	the	normal	operating	point
and	analyses	how	the	system	works	under	extreme	conditions.Example:	Test	cases	that	require	maximum	memory	or	other	resources	are	executed.	Test	cases	that	may	cause	thrashing	in	a	virtual	operating	system.	Test	cases	that	may	cause	excessive	disk	requirement	Performance	Testing.	It	is	designed	to	test	the	run-time	performance	of	software
within	the	context	of	an	integrated	system.	It	is	used	to	test	the	speed	and	effectiveness	of	the	program.	It	is	also	called	load	testing.	In	it,	we	check,	what	is	the	performance	of	the	system	in	the	given	load.	Example:	Checking	several	processor	cycles.	3.	Scalability	Testing	Scalability	Testing	is	a	type	of	non-functional	testing	in	which	the	performance
of	a	software	application,	system,	network	or	process	is	tested	in	terms	of	its	capability	to	scale	up	or	scale	down	the	number	of	user	request	load	or	other	such	performance	attributes.	It	can	be	carried	out	at	a	hardware,	software	or	database	level.Advantages	of	Scalability	Testing:It	provides	more	accessibility	to	the	product.	It	detects	issues	with
web	page	loading	and	other	performance	issues.	It	finds	and	fixes	the	issues	earlier	in	the	product	which	saves	a	lot	of	time.	It	ensures	the	end-user	experience	under	the	specific	load.	It	provides	customer	satisfaction.	It	helps	in	effective	tool	utilization	tracking.	4.	Stability	Testing	Stability	Testing	is	a	type	of	Software	Testing	to	check	the	quality	and
behavior	of	the	software	in	different	environmental	parameters.	It	is	defined	as	the	ability	of	the	product	to	continue	to	function	over	time	without	failure.	Stability	testing	assesses	stability	problems.	This	testing	is	mainly	intended	to	check	whether	the	application	will	crash	at	any	point	in	time	or	not.	Advantages	of	Stability	Testing:It	gives	the	limit	of
the	data	that	a	system	can	handle	practically.	It	provides	confidence	on	the	performance	of	the	system.	It	determines	the	stability	and	robustness	of	the	system	under	load.	Stability	testing	leads	to	a	better	end-user	experience.	Other	Types	of	Testing	1.	Smoke	Testing	Smoke	Testing	is	done	to	make	sure	that	the	software	under	testing	is	ready	or
stable	for	further	testing	It	is	called	a	smoke	test	as	the	testing	of	an	initial	pass	is	done	to	check	if	it	did	not	catch	fire	or	smoke	in	the	initial	switch-on.	Example:	If	the	project	has	2	modules	so	before	going	to	the	module	make	sure	that	module	1	works	properly.Advantages	of	Smoke	Testing:Smoke	testing	is	easy	to	perform.	It	helps	in	identifying
defects	in	the	early	stages.	It	improves	the	quality	of	the	system.	Smoke	testing	reduces	the	risk	of	failure.	Smoke	testing	makes	progress	easier	to	access.	2.	Sanity	Testing	Sanity	Testing	is	a	subset	of	regression	testing.	Sanity	testing	is	performed	to	ensure	that	the	code	changes	that	are	made	are	working	properly.	Sanity	testing	is	a	stoppage	to
check	whether	testing	for	the	build	can	proceed	or	not.	The	focus	of	the	team	during	the	sanity	testing	process	is	to	validate	the	functionality	of	the	application	and	not	detailed	testing.	Sanity	testing	is	generally	performed	on	a	build	where	the	production	deployment	is	required	immediately	like	a	critical	bug	fix.	Advantages	of	Sanity	Testing:	Sanity
testing	helps	to	quickly	identify	defects	in	the	core	functionality.	It	can	be	carried	out	in	less	time	as	no	documentation	is	required	for	sanity	testing.	If	the	defects	are	found	during	sanity	testing,	the	project	is	rejected	which	is	helpful	in	saving	time	for	execution	of	regression	tests.	This	testing	technique	is	not	so	expensive	when	compared	to	another
type	of	testing.	It	helps	to	identify	the	dependent	missing	objects.	3.	Regression	Testing	Regression	testing	is	a	way	to	check	if	recent	code	changes	have	affected	the	existing	features	of	a	software	application.	It	ensures	that	everything	still	works	fine	after	updates	or	bug	fixes.Regression	testing	can	be	performed	in	different	ways,	such	as:	Retesting
–	Checking	the	entire	application	or	specific	features	that	were	affected	by	the	changes.Re-execution	–	Running	previously	tested	cases	to	make	sure	everything	still	functions	properly.Comparison	–	Comparing	the	latest	version	of	the	software	with	an	older	version	to	ensure	no	features	are	broken.Advantages	of	Regression	Testing:Prevents	New
Bugs	–	Ensures	that	software	updates,	bug	fixes,	or	new	features	do	not	break	existing	functionality.Keeps	Software	Reliable	–	Confirms	that	the	software	continues	to	work	as	expected	after	any	changes.Improves	Stability	–	Regular	regression	testing	helps	maintain	the	overall	stability	and	performance	of	the	software.Every	time	a	new	module	is
added	leads	to	changes	in	the	program.	This	type	of	testing	makes	sure	that	the	whole	component	works	properly	even	after	adding	components	to	the	complete	program.	Example:	In	school	records,	suppose	we	have	module	staff,	students,	and	finance	combining	these	modules	and	checking	if	the	integration	of	these	modules	works	fine	in	regression
testing.	4.	Acceptance	Testing	Acceptance	testing	is	done	by	the	customers	to	check	whether	the	delivered	products	perform	the	desired	tasks	or	not,	as	stated	in	the	requirements.	We	use	Object-Oriented	Testing	for	discussing	test	plans	and	for	executing	the	projects.	Advantages	of	Acceptance	Testing:	This	testing	helps	the	project	team	to	know
the	further	requirements	of	the	users	directly	as	it	involves	the	users	for	testing.	Automated	test	execution.	It	brings	confidence	and	satisfaction	to	the	clients	as	they	are	directly	involved	in	the	testing	process.	It	is	easier	for	the	user	to	describe	their	requirement.	It	covers	only	the	Black-Box	testing	process	and	hence	the	entire	functionality	of	the
product	will	be	tested.	5.	User	Acceptance	Testing	User	Acceptance	Testing	(UAT)	serves	the	purpose	of	ensuring	that	the	software	meets	the	business	requirements	and	is	ready	for	deployment	by	validating	its	functionality	in	a	real-world	environment.	It	allows	end-users	to	test	the	software	to	ensure	it	meets	their	needs	and	operates	as	expected,
helping	to	identify	and	fix	any	issues	before	the	final	release.Advantages	of	User	Acceptance	testing:Ensures	the	Software	Meets	User	Needs:	UAT	helps	make	sure	the	software	does	what	the	end-users	expect	and	addresses	their	business	needs,	which	increases	the	chances	of	a	successful	launch.Uncovers	Real-World	Issues:	Since	actual	users	carry
out	UAT,	it	can	uncover	real-world	problems	that	developers	might	not	have	thought	of.	This	ensures	the	software	works	in	the	way	users	need	it	to.Boosts	User	Satisfaction:	By	getting	feedback	from	users	early	on,	UAT	helps	shape	the	product	into	something	that	meets	their	expectations.	The	result	is	a	happier	and	more	satisfied	user	base.Reduces
Post-Release	Surprises:	By	catching	issues	before	the	software	is	released,	UAT	helps	minimize	the	risk	of	bugs	or	broken	features	that	could	appear	once	it’s	live.Builds	Confidence	in	the	Product:	When	users	test	and	approve	the	software,	it	builds	confidence	in	the	product,	ensuring	it’s	ready	for	the	final	release.6.	Exploratory	Testing	Exploratory
Testing	is	a	type	of	software	testing	in	which	the	tester	is	free	to	select	any	possible	methodology	to	test	the	software.	It	is	an	unscripted	approach	to	software	testing.	In	exploratory	testing,	software	developers	use	their	learning,	knowledge,	skills,	and	abilities	to	test	the	software	developed	by	themselves.Advantages	of	Exploratory	Testing:Less
preparation	required:	It	takes	no	preparation	as	it	is	an	unscripted	testing	technique.	Finds	critical	defects:	Exploratory	testing	involves	an	investigation	process	that	helps	to	find	critical	defects	very	quickly.	Improves	productivity:	In	exploratory	testing,	testers	use	their	knowledge,	skills,	and	experience	to	test	the	software.	It	helps	to	expand	the
imagination	of	the	testers	by	executing	more	test	cases,	thus	enhancing	the	overall	quality	of	the	software.	7.	Adhoc	Testing	Adhoc	testing	is	a	type	of	software	testing	that	is	performed	informally	and	randomly	after	the	formal	testing	is	completed	to	find	any	loophole	in	the	system.	For	this	reason,	it	is	also	known	as	Random	or	Monkey	testing.	Adhoc
testing	is	not	performed	in	a	structured	way	so	it	is	not	based	on	any	methodological	approach.	That’s	why	Adhoc	testing	is	a	type	of	Unstructured	Software	Testing.	Advantages	of	Adhoc	testing:	The	errors	that	can	not	be	identified	with	written	test	cases	can	be	identified	by	Adhoc	testing.	It	can	be	performed	within	a	very	limited	time.	Helps	to
create	unique	test	cases.	This	test	helps	to	build	a	strong	product	that	is	less	prone	to	future	problems.	This	testing	can	be	performed	at	any	time	during	Software	Development	Life	Cycle	Process	(SDLC).8.	Security	Testing	Security	Testing	is	a	type	of	Software	Testing	that	uncovers	vulnerabilities	in	the	system	and	determines	that	the	data	and
resources	of	the	system	are	protected	from	possible	intruders.	It	ensures	that	the	software	system	and	application	are	free	from	any	threats	or	risks	that	can	cause	a	loss.	Security	testing	of	any	system	is	focused	on	finding	all	possible	loopholes	and	weaknesses	of	the	system	that	might	result	in	the	loss	of	information	or	repute	of	the	organization.
Advantages	of	Security	Testing:	Identifying	vulnerabilities:	Security	testing	helps	identify	vulnerabilities	in	the	system	that	could	be	exploited	by	attackers,	such	as	weak	passwords,	unpatched	software,	and	misconfigured	systems.	Improving	system	security:	Security	testing	helps	improve	the	overall	security	of	the	system	by	identifying	and	fixing
vulnerabilities	and	potential	threats.	Ensuring	compliance:	Security	testing	helps	ensure	that	the	system	meets	relevant	security	standards	and	regulations,	such	as	HIPAA,	PCI	DSS,	and	SOC2.	9.	Globalization	Testing	Globalization	Testing	is	a	type	of	software	testing	that	is	performed	to	ensure	the	system	or	software	application	can	function
independently	of	the	geographical	and	cultural	environment.	It	ensures	that	the	application	can	be	used	all	over	the	world	and	accepts	all	language	texts.	Nowadays	with	the	increase	in	various	technologies,	every	software	product	is	designed	in	such	a	way	that	it	is	a	globalized	software	product.	Advantages	of	Globalization	Testing:Helps	to	create
scalable	products:	It	makes	the	software	product	more	flexible	and	scalable.	Save	time:	It	saves	overall	time	and	effort	for	software	testing.	Reduce	time	for	localization	testing:	Globalization	testing	helps	to	reduce	the	time	and	cost	of	localization	testing.	10.	Alpha	Testing	Alpha	testing	is	a	type	of	validation	testing.	It	is	a	type	of	acceptance	testing
that	is	done	before	the	product	is	released	to	customers.	It	is	typically	done	by	QA	people.	Example:	When	software	testing	is	performed	internally	within	the	organization.	Advantages	of	Alpha	testing:Early	Bug	Detection	:	Identifies	and	addresses	bugs	early	in	the	development	process,	reducing	the	risk	of	major	issues	later.Improved	Quality	:
Enhances	the	overall	quality	and	stability	of	the	software	before	it	reaches	real	users.Cost-Effective	:	Fixing	issues	during	alpha	testing	is	generally	cheaper	than	addressing	them	after	release.Usability	Insights	:	Provides	valuable	feedback	on	the	user	experience,	allowing	for	improvements	in	usability	and	interface	design.Requirement	Validation	:
Ensures	the	software	meets	business	and	user	requirements,	aligning	it	more	closely	with	intended	goals.11.	Beta	Testing	The	beta	test	is	conducted	at	one	or	more	customer	sites	by	the	end-user	of	the	software.	This	version	is	released	for	a	limited	number	of	users	for	testing	in	a	real-time	environment.	Example:	When	software	testing	is	performed
for	the	limited	number	of	people.	Advantages	of	Beta	Testing:It	reduces	product	failure	risk	via	customer	validation.Beta	Testing	allows	a	company	to	test	post-launch	infrastructure.It	helps	in	improving	product	quality	via	customer	feedback.Cost-effective	compared	to	similar	data	gathering	methods.It	creates	goodwill	with	customers	and	increases
customer	satisfaction.12.	Object-Oriented	Testing	Object-Oriented	Testing	testing	is	a	combination	of	various	testing	techniques	that	help	to	verify	and	validate	object-oriented	software.	This	testing	is	done	in	the	following	manner:	Testing	of	Requirements,	Design	and	Analysis	of	Testing,	Testing	of	Code,	Integration	testing,	System	testing,	User
Testing.	13.	Recovery	TestingRecovery	Testing	is	a	type	of	software	testing	that	checks	how	well	an	application	can	recover	from	crashes,	failures,	or	other	unexpected	issues.	It	involves	intentionally	causing	problems	in	the	software	to	see	if	it	can	quickly	and	effectively	return	to	normal	operation.Advantages	of	Recovery	Testing:Risk	elimination	is
possible	as	the	potential	flaws	are	detected	and	removed	from	the	system.Improved	performance	as	faults	are	removed,	and	the	system	becomes	more	reliable	and	performs	better	in	case	a	failure	occurs.Ensures	Reliability:	Confirms	that	the	software	can	recover	from	crashes	or	failures,	making	it	more	reliable	for	users.Identifies	Weaknesses:	Helps
uncover	potential	weaknesses	or	vulnerabilities	in	the	system	that	could	lead	to	failures.Enhances	User	Experience:	Ensures	a	smooth	user	experience	by	minimizing	downtime	and	data	loss	during	unexpected	events.Improves	System	Stability:	Contributes	to	overall	system	stability	by	ensuring	it	can	handle	and	recover	from	disruptions.14.
Compatibility	TestingCompatibility	Testing	is	software	testing	that	comes	under	the	non-functional	testing	category,	and	it	is	performed	on	an	application	to	check	its	compatibility	(running	capability)	on	different	platforms/environments.	This	testing	is	done	only	when	the	application	becomes	stable.	Advantages	of	Compatibility	Testing:Works
Everywhere:	Compatibility	testing	verify	your	app	runs	smoothly	on	all	platforms,	devices,	and	browsers,	helping	you	reach	a	wider	audience.Better	User	Experience:	By	checking	how	your	app	behaves	in	different	environments,	you	can	spot	and	fix	issues	that	could	frustrate	users,	giving	them	a	more	seamless	experience.Catches	Hidden	Problems:
This	type	of	testing	helps	you	find	issues	that	might	pop	up	due	to	different	hardware,	software,	or	network	setups,	which	could	go	unnoticed	if	you	only	test	on	one	system.Consistency	Across	Devices:	You	want	your	app	to	look	and	work	the	same	everywhere,	right?	Compatibility	testing	ensures	consistency	across	all	devices	and	browsers,	so	users
have	the	same	experience	no	matter	how	they	access	it.Avoids	Problems	After	Launch:	By	finding	and	fixing	compatibility	issues	early,	you	prevent	headaches	and	customer	complaints	after	your	app	is	released,	making	the	whole	process	smoother.15.	Volume	TestingVolume	Testing	is	a	type	of	software	testing	which	is	carried	out	to	test	a	software
application	with	a	certain	amount	of	data.	The	amount	used	in	volume	testing	could	be	a	database	size	or	it	could	also	be	the	size	of	an	interface	file	that	is	the	subject	of	volume	testing.	Advantages	of	Volume	testing:Volume	testing	is	helpful	in	saving	maintenance	cost	that	will	be	spent	on	application	maintenance.Volume	testing	is	also	helpful	in	a
rapid	start	for	scalability	plans.Volume	testing	also	helps	in	early	identification	of	bottlenecks.Volume	testing	ensures	that	the	system	is	capable	of	real	world	usage.16.	Installation	TestingInstallation	Testing	Testing	the	procedures	to	achieve	an	installed	software	system	that	can	be	used	is	known	as	installation	testing.	In	this	installation	testing
checking	full	or	partial	upgrades	and	other	features	install/uninstall	processes	are	included.	Advantages	of	Installation	Testing:The	first	biggest	advantage	is	that	it	verifies	the	designs	of	apps	and	software	on	a	basic	level	of	test	performance.It’s	a	very	crucial	part	of	STLC	which	helps	in	maintaining	the	standard	according	to	that.It’s	a	very	quick	and
handy	method	to	check	the	version	of	the	softwareThe	greater	output	results	of	installation	testing	help	the	developer	to	improve	the	app	or	software.Improved	software	quality:	Installation	testing	helps	to	identify	and	fix	installation	issues	and	errors,	improving	the	software’s	overall	quality.	17.	Localization	TestingLocalization	Testing	is	a	Type
of	Software	Testing	that	is	performed	to	verify	the	quality	of	a	product	for	a	specific	culture	or	locale.	Localization	testing	is	performed	only	on	the	local	version	of	the	product.Advantages	of	Localization	Testing:Localization	testing	reduces	the	overall	testing	cost.Localization	testing	reduces	the	overall	support	cost.It	helps	in	reducing	the	time	for
testing.Localization	testing	has	more	flexibility	and	scalability.18.	A/B	TestingA/B	Testing	or	split	testing,	in	a	nutshell,	is	a	means	to	compare	two	iterations	of	an	email,	website,	or	other	marketing	asset	and	assess	the	performance	differences	between	them.Advantages	of	A/B	Testing:Enhanced	Content:	For	instance,	while	testing	marketing	content,
users	must	be	shown	a	list	of	potential	upgrades.Reduces	Costs:	Companies	can	save	money	by	using	A/B	testing	to	find	procedures	that	produce	better	results.	One	marketing	effort	will	always	be	superior	to	the	other;Low	Risks:	You	can	lower	risks	by	using	A/B	tests.	You	can	run	an	A/B	test	to	observe	how	a	new	update	or	component	on	your
product	affects	your	system	and	how	users	respond	to	it	if	you’re	unsure	of	how	it	will	perform.	19.	Mutation	TestingMutation	Testing	is	a	type	of	Software	Testing	that	is	performed	to	design	new	software	tests	and	also	evaluate	the	quality	of	already	existing	software	tests.	Mutation	testing	is	related	to	modification	a	program	in	small
ways.Advantages	of	Mutation	Testing:It	brings	a	good	level	of	error	detection	in	the	program.It	discovers	ambiguities	in	the	source	code.It	finds	and	solves	the	issues	of	loopholes	in	the	program.It	helps	the	testers	to	write	or	automate	the	better	test	cases.It	provides	more	efficient	programming	source	code.20.	Graphical	User	Interface
TestingGraphical	User	Interface	Testing	is	the	process	for	ensuring	proper	functionality	of	the	graphical	user	interface	(GUI)	for	a	specific	application.	GUI	testing	generally	evaluates	a	design	of	elements	such	as	layout,	colors	and	also	fonts,	font	sizes,	labels,	text	boxes,	text	formatting,	captions,	buttons,	lists,	icons,	links,	and	content.Advantages	of
Graphical	User	Interface	Testing:It	provides	a	customizable	test	report.It	is	run	tests	in	parallel	or	distributed	on	a	Selenium	Grid	with	built-in	Selenium	Webdriver.It	allows	you	to	test	the	functionality	from	a	user’s	perspective.Sometimes	the	internal	functions	of	the	system	work	correctly	but	the	user	interface	doesn’t	then	GUI	testing	is	good	to
have	in	addition	to	the	other	types.How	to	Automate	Your	Tests?To	automate	your	tests,	you'll	need	to	write	them	using	a	testing	framework	that	works	with	your	programming	language.	For	example,	you	can	use	PHPUnit	for	PHP,	Mocha	for	JavaScript,	and	RSpec	for	Ruby.	There	are	many	frameworks	available,	so	you	might	need	to	research	or	ask
other	developers	to	find	the	best	one	for	your	needs.Once	your	tests	can	run	from	your	terminal,	you	can	automate	them	using	a	continuous	integration	(CI)	server	like	Bamboo	or	a	cloud	service	like	Bitbucket	Pipelines.	These	tools	monitor	your	code	repository	and	run	your	tests	automatically	whenever	new	changes	are	pushed.Advantages	of
Software	Testing	Below	are	the	benefits	of	software	testing:Customer	Satisfaction:	Software	testing	makes	sure	that	your	application	works	exactly	as	it	should,	meeting	the	needs	of	your	customers.	This	leads	to	higher	satisfaction	and	trust	in	your	product.Cost-Effective:	By	catching	issues	early,	software	testing	helps	you	save	money	on	future	fixes
and	maintenance,	making	the	whole	development	process	more	efficient.Quality	Product:	Testing	ensures	that	your	product	is	of	high	quality	by	finding	bugs,	checking	for	compatibility,	and	ensuring	it	meets	user	expectations.Low	Failure:	Testing	helps	identify	potential	weak	points	in	your	application,	making	it	more	stable	and	reliable,	which
reduces	the	chance	of	failures,	especially	under	heavy	use.Bug-Free	Application:	The	main	goal	of	software	testing	is	to	find	and	fix	bugs.	While	it’s	hard	to	achieve	a	100%	bug-free	application,	thorough	testing	makes	your	product	run	more	smoothly	and	reliably.Security:	Testing	checks	for	security	vulnerabilities,	ensuring	your	application	is	safe
from	threats	and	that	sensitive	data	is	protected,	especially	in	critical	sectors	like	banking.Easy	Recovery:	Testing	helps	ensure	that	if	your	application	fails,	it	can	quickly	recover	and	return	to	normal	functionality,	minimizing	downtime.Speed	Up	the	Development	Process:	When	testing	is	done	alongside	development,	issues	are	caught	early,	allowing
for	quicker	fixes	and	faster	delivery	of	the	final	product.Early	Defect	Detection:	By	starting	testing	early	in	development,	issues	are	found	and	fixed	sooner,	saving	time	and	preventing	bigger	problems	later	in	the	process.Reliable	Product:	Software	testing	makes	your	product	more	reliable	by	ensuring	it	meets	user	needs	and	is	free	of	critical	issues,
giving	users	a	smooth	and	dependable	experience.Disadvantages	of	Software	Testing	Time-Consuming	and	adds	to	the	project	cost.	This	can	slow	down	the	development	process.	Not	all	defects	can	be	found.	Can	be	difficult	to	fully	test	complex	systems.Potential	for	human	error	during	the	testing	process.


