
Webview	source	code

http://xeltuve.com/c3?utm_term=webview+source+code






Chromium	webview	source	code.	Android	advanced	webview	source	code.	Ios	webview	source	code.	Flutter	webview	source	code.	Android	webview	source	code	download.	Android	webview	source	code	github.	Android	system	webview	source	code.	Webview	source	code	android	studio.

A	View	that	displays	web	pages.	In	most	cases,	we	recommend	using	a	standard	web	browser,	like	Chrome,	to	deliver	content	to	the	user.	To	learn	more	about	web	browsers,	read	the	guide	on	invoking	a	browser	with	an	intent.	WebView	objects	allow	you	to	display	web	content	as	part	of	your	activity	layout,	but	lack	some	of	the	features	of	fully-
developed	browsers.	A	WebView	is	useful	when	you	need	increased	control	over	the	UI	and	advanced	configuration	options	that	will	allow	you	to	embed	web	pages	in	a	specially-designed	environment	for	your	app.	To	learn	more	about	WebView	and	alternatives	for	serving	web	content,	read	the	documentation	on	Web-based	content.	interface
WebView.FindListener	Interface	to	listen	for	find	results.		class	WebView.HitTestResult	interface	WebView.PictureListener	This	interface	was	deprecated	in	API	level	12.	This	interface	is	now	obsolete.		class	WebView.VisualStateCallback	Callback	interface	supplied	to	WebView.postVisualStateCallback(long,	WebView.VisualStateCallback)	for
receiving	notifications	about	the	visual	state.		class	WebView.WebViewTransport	Transportation	object	for	returning	WebView	across	thread	boundaries.		From	class	android.view.View	android:accessibilityHeading	Whether	or	not	this	view	is	a	heading	for	accessibility	purposes.		android:accessibilityLiveRegion	Indicates	to	accessibility	services
whether	the	user	should	be	notified	when	this	view	changes.		android:accessibilityPaneTitle	The	title	this	view	should	present	to	accessibility	as	a	pane	title.		android:accessibilityTraversalAfter	Sets	the	id	of	a	view	after	which	this	one	is	visited	in	accessibility	traversal.		android:accessibilityTraversalBefore	Sets	the	id	of	a	view	before	which	this	one	is
visited	in	accessibility	traversal.		android:allowClickWhenDisabled	Whether	or	not	allow	clicks	on	disabled	view.		android:alpha	alpha	property	of	the	view,	as	a	value	between	0	(completely	transparent)	and	1	(completely	opaque).		android:autoHandwritingEnabled	Whether	or	not	the	auto	handwriting	initiation	is	enabled	in	this	View.	
android:autofillHints	Describes	the	content	of	a	view	so	that	a	autofill	service	can	fill	in	the	appropriate	data.		android:autofilledHighlight	Drawable	to	be	drawn	over	the	view	to	mark	it	as	autofilled	May	be	a	reference	to	another	resource,	in	the	form	"@[+][package:]type/name"	or	a	theme	attribute	in	the	form	"?[package:]type/name".	
android:background	A	drawable	to	use	as	the	background.		android:backgroundTint	Tint	to	apply	to	the	background.		android:backgroundTintMode	Blending	mode	used	to	apply	the	background	tint.		android:clickable	Defines	whether	this	view	reacts	to	click	events.		android:clipToOutline	Whether	the	View's	Outline	should	be	used	to	clip	the	contents
of	the	View.		android:contentDescription	Defines	text	that	briefly	describes	content	of	the	view.		android:contextClickable	Defines	whether	this	view	reacts	to	context	click	events.		android:defaultFocusHighlightEnabled	Whether	this	View	should	use	a	default	focus	highlight	when	it	gets	focused	but	doesn't	have	R.attr.state_focused	defined	in	its
background.		android:drawingCacheQuality	Defines	the	quality	of	translucent	drawing	caches.		android:duplicateParentState	When	this	attribute	is	set	to	true,	the	view	gets	its	drawable	state	(focused,	pressed,	etc.)	from	its	direct	parent	rather	than	from	itself.		android:elevation	base	z	depth	of	the	view.		android:fadeScrollbars	Defines	whether	to
fade	out	scrollbars	when	they	are	not	in	use.		android:fadingEdgeLength	Defines	the	length	of	the	fading	edges.		android:filterTouchesWhenObscured	Specifies	whether	to	filter	touches	when	the	view's	window	is	obscured	by	another	visible	window.		android:fitsSystemWindows	Boolean	internal	attribute	to	adjust	view	layout	based	on	system
windows	such	as	the	status	bar.		android:focusable	Controls	whether	a	view	can	take	focus.		android:focusableInTouchMode	Boolean	that	controls	whether	a	view	can	take	focus	while	in	touch	mode.		android:focusedByDefault	Whether	this	view	is	a	default-focus	view.		android:forceHasOverlappingRendering	Whether	this	view	has	elements	that	may
overlap	when	drawn.		android:foreground	Defines	the	drawable	to	draw	over	the	content.		android:foregroundGravity	Defines	the	gravity	to	apply	to	the	foreground	drawable.		android:foregroundTint	Tint	to	apply	to	the	foreground.		android:foregroundTintMode	Blending	mode	used	to	apply	the	foreground	tint.		android:hapticFeedbackEnabled
Boolean	that	controls	whether	a	view	should	have	haptic	feedback	enabled	for	events	such	as	long	presses.		android:id	Supply	an	identifier	name	for	this	view,	to	later	retrieve	it	with	View.findViewById()	or	Activity.findViewById().		android:importantForAccessibility	Describes	whether	or	not	this	view	is	important	for	accessibility.	
android:importantForAutofill	Hints	the	Android	System	whether	the	view	node	associated	with	this	View	should	be	included	in	a	view	structure	used	for	autofill	purposes.		android:importantForContentCapture	Hints	the	Android	System	whether	the	view	node	associated	with	this	View	should	be	use	for	content	capture	purposes.	
android:isScrollContainer	Set	this	if	the	view	will	serve	as	a	scrolling	container,	meaning	that	it	can	be	resized	to	shrink	its	overall	window	so	that	there	will	be	space	for	an	input	method.		android:keepScreenOn	Controls	whether	the	view's	window	should	keep	the	screen	on	while	visible.		android:keyboardNavigationCluster	Whether	this	view	is	a
root	of	a	keyboard	navigation	cluster.		android:layerType	Specifies	the	type	of	layer	backing	this	view.		android:layoutDirection	Defines	the	direction	of	layout	drawing.		android:longClickable	Defines	whether	this	view	reacts	to	long	click	events.		android:minHeight	Defines	the	minimum	height	of	the	view.		android:minWidth	Defines	the	minimum
width	of	the	view.		android:nextClusterForward	Defines	the	next	keyboard	navigation	cluster.		android:nextFocusDown	Defines	the	next	view	to	give	focus	to	when	the	next	focus	is	View.FOCUS_DOWN	If	the	reference	refers	to	a	view	that	does	not	exist	or	is	part	of	a	hierarchy	that	is	invisible,	a	RuntimeException	will	result	when	the	reference	is
accessed.		android:nextFocusForward	Defines	the	next	view	to	give	focus	to	when	the	next	focus	is	View.FOCUS_FORWARD	If	the	reference	refers	to	a	view	that	does	not	exist	or	is	part	of	a	hierarchy	that	is	invisible,	a	RuntimeException	will	result	when	the	reference	is	accessed.		android:nextFocusLeft	Defines	the	next	view	to	give	focus	to	when	the
next	focus	is	View.FOCUS_LEFT.		android:nextFocusRight	Defines	the	next	view	to	give	focus	to	when	the	next	focus	is	View.FOCUS_RIGHT	If	the	reference	refers	to	a	view	that	does	not	exist	or	is	part	of	a	hierarchy	that	is	invisible,	a	RuntimeException	will	result	when	the	reference	is	accessed.		android:nextFocusUp	Defines	the	next	view	to	give
focus	to	when	the	next	focus	is	View.FOCUS_UP	If	the	reference	refers	to	a	view	that	does	not	exist	or	is	part	of	a	hierarchy	that	is	invisible,	a	RuntimeException	will	result	when	the	reference	is	accessed.		android:onClick	Name	of	the	method	in	this	View's	context	to	invoke	when	the	view	is	clicked.		android:outlineAmbientShadowColor	Sets	the	color
of	the	ambient	shadow	that	is	drawn	when	the	view	has	a	positive	Z	or	elevation	value.		android:outlineSpotShadowColor	Sets	the	color	of	the	spot	shadow	that	is	drawn	when	the	view	has	a	positive	Z	or	elevation	value.		android:padding	Sets	the	padding,	in	pixels,	of	all	four	edges.		android:paddingBottom	Sets	the	padding,	in	pixels,	of	the	bottom
edge;	see	R.attr.padding.		android:paddingEnd	Sets	the	padding,	in	pixels,	of	the	end	edge;	see	R.attr.padding.		android:paddingHorizontal	Sets	the	padding,	in	pixels,	of	the	left	and	right	edges;	see	R.attr.padding.		android:paddingLeft	Sets	the	padding,	in	pixels,	of	the	left	edge;	see	R.attr.padding.		android:paddingRight	Sets	the	padding,	in	pixels,	of
the	right	edge;	see	R.attr.padding.		android:paddingStart	Sets	the	padding,	in	pixels,	of	the	start	edge;	see	R.attr.padding.		android:paddingTop	Sets	the	padding,	in	pixels,	of	the	top	edge;	see	R.attr.padding.		android:paddingVertical	Sets	the	padding,	in	pixels,	of	the	top	and	bottom	edges;	see	R.attr.padding.		android:preferKeepClear	Sets	a
preference	to	keep	the	bounds	of	this	view	clear	from	floating	windows	above	this	view's	window.		android:requiresFadingEdge	Defines	which	edges	should	be	faded	on	scrolling.		android:rotation	rotation	of	the	view,	in	degrees.		android:rotationX	rotation	of	the	view	around	the	x	axis,	in	degrees.		android:rotationY	rotation	of	the	view	around	the	y
axis,	in	degrees.		android:saveEnabled	If	false,	no	state	will	be	saved	for	this	view	when	it	is	being	frozen.		android:scaleX	scale	of	the	view	in	the	x	direction.		android:scaleY	scale	of	the	view	in	the	y	direction.		android:screenReaderFocusable	Whether	this	view	should	be	treated	as	a	focusable	unit	by	screen	reader	accessibility	tools.	
android:scrollIndicators	Defines	which	scroll	indicators	should	be	displayed	when	the	view	can	be	scrolled.		android:scrollX	The	initial	horizontal	scroll	offset,	in	pixels.		android:scrollY	The	initial	vertical	scroll	offset,	in	pixels.		android:scrollbarAlwaysDrawHorizontalTrack	Defines	whether	the	horizontal	scrollbar	track	should	always	be	drawn.	
android:scrollbarAlwaysDrawVerticalTrack	Defines	whether	the	vertical	scrollbar	track	should	always	be	drawn.		android:scrollbarDefaultDelayBeforeFade	Defines	the	delay	in	milliseconds	that	a	scrollbar	waits	before	fade	out.		android:scrollbarFadeDuration	Defines	the	delay	in	milliseconds	that	a	scrollbar	takes	to	fade	out.		android:scrollbarSize
Sets	the	width	of	vertical	scrollbars	and	height	of	horizontal	scrollbars.		android:scrollbarStyle	Controls	the	scrollbar	style	and	position.		android:scrollbarThumbHorizontal	Defines	the	horizontal	scrollbar	thumb	drawable.		android:scrollbarThumbVertical	Defines	the	vertical	scrollbar	thumb	drawable.		android:scrollbarTrackHorizontal	Defines	the
horizontal	scrollbar	track	drawable.		android:scrollbarTrackVertical	Defines	the	vertical	scrollbar	track	drawable.		android:scrollbars	Defines	which	scrollbars	should	be	displayed	on	scrolling	or	not.		android:soundEffectsEnabled	Boolean	that	controls	whether	a	view	should	have	sound	effects	enabled	for	events	such	as	clicking	and	touching.	
android:stateListAnimator	Sets	the	state-based	animator	for	the	View.		android:tag	Supply	a	tag	for	this	view	containing	a	String,	to	be	retrieved	later	with	View.getTag()	or	searched	for	with	View.findViewWithTag().		android:textAlignment	Defines	the	alignment	of	the	text.		android:textDirection	Defines	the	direction	of	the	text.		android:theme
Specifies	a	theme	override	for	a	view.		android:tooltipText	Defines	text	displayed	in	a	small	popup	window	on	hover	or	long	press.		android:transformPivotX	x	location	of	the	pivot	point	around	which	the	view	will	rotate	and	scale.		android:transformPivotY	y	location	of	the	pivot	point	around	which	the	view	will	rotate	and	scale.		android:transitionName
Names	a	View	such	that	it	can	be	identified	for	Transitions.		android:translationX	translation	in	x	of	the	view.		android:translationY	translation	in	y	of	the	view.		android:translationZ	translation	in	z	of	the	view.		android:visibility	Controls	the	initial	visibility	of	the	view.		From	class	android.view.ViewGroup	int	CLIP_TO_PADDING_MASK	We	clip	to
padding	when	FLAG_CLIP_TO_PADDING	and	FLAG_PADDING_NOT_NULL	are	set	at	the	same	time.	int	FOCUS_AFTER_DESCENDANTS	This	view	will	get	focus	only	if	none	of	its	descendants	want	it.	int	FOCUS_BEFORE_DESCENDANTS	This	view	will	get	focus	before	any	of	its	descendants.	int	FOCUS_BLOCK_DESCENDANTS	This	view	will	block
any	of	its	descendants	from	getting	focus,	even	if	they	are	focusable.	int	LAYOUT_MODE_CLIP_BOUNDS	This	constant	is	a	layoutMode.	int	LAYOUT_MODE_OPTICAL_BOUNDS	This	constant	is	a	layoutMode.	int	PERSISTENT_ALL_CACHES	This	constant	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the
introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	View.setLayerType(int,
android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have
compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	PERSISTENT_ANIMATION_CACHE	This	constant	was	deprecated	in	API	level	28.	The	view	drawing	cache	was
largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,
View.setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are
discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	PERSISTENT_NO_CACHE	This	constant	was	deprecated	in	API	level	28.	The	view	drawing
cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha
animations,	View.setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.	However	these	software-
rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	PERSISTENT_SCROLLING_CACHE	This	constant	was	deprecated	in
API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers
are	useful,	such	as	for	alpha	animations,	View.setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.
However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	From	class	android.view.View	int
ACCESSIBILITY_LIVE_REGION_ASSERTIVE	Live	region	mode	specifying	that	accessibility	services	should	interrupt	ongoing	speech	to	immediately	announce	changes	to	this	view.	int	ACCESSIBILITY_LIVE_REGION_NONE	Live	region	mode	specifying	that	accessibility	services	should	not	automatically	announce	changes	to	this	view.	int
ACCESSIBILITY_LIVE_REGION_POLITE	Live	region	mode	specifying	that	accessibility	services	should	announce	changes	to	this	view.	int	AUTOFILL_FLAG_INCLUDE_NOT_IMPORTANT_VIEWS	Flag	requesting	you	to	add	views	that	are	marked	as	not	important	for	autofill	(see	setImportantForAutofill(int))	to	a	ViewStructure.	String
AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_DATE	Hint	indicating	that	this	view	can	be	autofilled	with	a	credit	card	expiration	date.	String	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_DAY	Hint	indicating	that	this	view	can	be	autofilled	with	a	credit	card	expiration	day.	String	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_MONTH	Hint
indicating	that	this	view	can	be	autofilled	with	a	credit	card	expiration	month.	String	AUTOFILL_HINT_CREDIT_CARD_EXPIRATION_YEAR	Hint	indicating	that	this	view	can	be	autofilled	with	a	credit	card	expiration	year.	String	AUTOFILL_HINT_CREDIT_CARD_NUMBER	Hint	indicating	that	this	view	can	be	autofilled	with	a	credit	card	number.
String	AUTOFILL_HINT_CREDIT_CARD_SECURITY_CODE	Hint	indicating	that	this	view	can	be	autofilled	with	a	credit	card	security	code.	String	AUTOFILL_HINT_EMAIL_ADDRESS	Hint	indicating	that	this	view	can	be	autofilled	with	an	email	address.	String	AUTOFILL_HINT_NAME	Hint	indicating	that	this	view	can	be	autofilled	with	a	user's	real
name.	String	AUTOFILL_HINT_PASSWORD	Hint	indicating	that	this	view	can	be	autofilled	with	a	password.	String	AUTOFILL_HINT_PHONE	Hint	indicating	that	this	view	can	be	autofilled	with	a	phone	number.	String	AUTOFILL_HINT_POSTAL_ADDRESS	Hint	indicating	that	this	view	can	be	autofilled	with	a	postal	address.	String
AUTOFILL_HINT_POSTAL_CODE	Hint	indicating	that	this	view	can	be	autofilled	with	a	postal	code.	String	AUTOFILL_HINT_USERNAME	Hint	indicating	that	this	view	can	be	autofilled	with	a	username.	int	AUTOFILL_TYPE_DATE	Autofill	type	for	a	field	that	contains	a	date,	which	is	represented	by	a	long	representing	the	number	of	milliseconds
since	the	standard	base	time	known	as	"the	epoch",	namely	January	1,	1970,	00:00:00	GMT	(see	Date.getTime().	int	AUTOFILL_TYPE_LIST	Autofill	type	for	a	selection	list	field,	which	is	filled	by	an	int	representing	the	element	index	inside	the	list	(starting	at	0).	int	AUTOFILL_TYPE_NONE	Autofill	type	for	views	that	cannot	be	autofilled.	int
AUTOFILL_TYPE_TEXT	Autofill	type	for	a	text	field,	which	is	filled	by	a	CharSequence.	int	AUTOFILL_TYPE_TOGGLE	Autofill	type	for	a	togglable	field,	which	is	filled	by	a	boolean.	int	DRAG_FLAG_ACCESSIBILITY_ACTION	Flag	indicating	that	the	drag	was	initiated	with	AccessibilityNodeInfo.AccessibilityAction#ACTION_DRAG_START.	int
DRAG_FLAG_GLOBAL	Flag	indicating	that	a	drag	can	cross	window	boundaries.	int	DRAG_FLAG_GLOBAL_PERSISTABLE_URI_PERMISSION	When	this	flag	is	used	with	DRAG_FLAG_GLOBAL_URI_READ	and/or	DRAG_FLAG_GLOBAL_URI_WRITE,	the	URI	permission	grant	can	be	persisted	across	device	reboots	until	explicitly	revoked	with
Context.revokeUriPermission(Uri,	int)	Context.revokeUriPermission}.	int	DRAG_FLAG_GLOBAL_PREFIX_URI_PERMISSION	When	this	flag	is	used	with	DRAG_FLAG_GLOBAL_URI_READ	and/or	DRAG_FLAG_GLOBAL_URI_WRITE,	the	URI	permission	grant	applies	to	any	URI	that	is	a	prefix	match	against	the	original	granted	URI.	int
DRAG_FLAG_GLOBAL_URI_READ	When	this	flag	is	used	with	DRAG_FLAG_GLOBAL,	the	drag	recipient	will	be	able	to	request	read	access	to	the	content	URI(s)	contained	in	the	ClipData	object.	int	DRAG_FLAG_GLOBAL_URI_WRITE	When	this	flag	is	used	with	DRAG_FLAG_GLOBAL,	the	drag	recipient	will	be	able	to	request	write	access	to	the
content	URI(s)	contained	in	the	ClipData	object.	int	DRAG_FLAG_OPAQUE	Flag	indicating	that	the	drag	shadow	will	be	opaque.	int	DRAWING_CACHE_QUALITY_AUTO	This	constant	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-
acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered
snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE
bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	DRAWING_CACHE_QUALITY_HIGH	This	constant	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API
11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For
software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as
Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	DRAWING_CACHE_QUALITY_LOW	This	constant	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated
rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware
rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering
features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	FIND_VIEWS_WITH_CONTENT_DESCRIPTION	Find	find	views	that	contain	the	specified	content	description.	int	FIND_VIEWS_WITH_TEXT	Find	views	that	render
the	specified	text.	int	FOCUSABLE	This	view	wants	keystrokes.	int	FOCUSABLES_ALL	View	flag	indicating	whether	addFocusables(java.util.ArrayList,	int,	int)	should	add	all	focusable	Views	regardless	if	they	are	focusable	in	touch	mode.	int	FOCUSABLES_TOUCH_MODE	View	flag	indicating	whether	addFocusables(java.util.ArrayList,	int,	int)	should
add	only	Views	focusable	in	touch	mode.	int	FOCUSABLE_AUTO	This	view	determines	focusability	automatically.	int	FOCUS_BACKWARD	Use	with	focusSearch(int).	int	FOCUS_DOWN	Use	with	focusSearch(int).	int	FOCUS_FORWARD	Use	with	focusSearch(int).	int	FOCUS_LEFT	Use	with	focusSearch(int).	int	FOCUS_RIGHT	Use	with
focusSearch(int).	int	FOCUS_UP	Use	with	focusSearch(int).	int	GONE	This	view	is	invisible,	and	it	doesn't	take	any	space	for	layout	purposes.	int	HAPTIC_FEEDBACK_ENABLED	View	flag	indicating	whether	this	view	should	have	haptic	feedback	enabled	for	events	such	as	long	presses.	int	IMPORTANT_FOR_ACCESSIBILITY_AUTO	Automatically
determine	whether	a	view	is	important	for	accessibility.	int	IMPORTANT_FOR_ACCESSIBILITY_NO	The	view	is	not	important	for	accessibility.	int	IMPORTANT_FOR_ACCESSIBILITY_NO_HIDE_DESCENDANTS	The	view	is	not	important	for	accessibility,	nor	are	any	of	its	descendant	views.	int	IMPORTANT_FOR_ACCESSIBILITY_YES	The	view	is
important	for	accessibility.	int	IMPORTANT_FOR_AUTOFILL_AUTO	Automatically	determine	whether	a	view	is	important	for	autofill.	int	IMPORTANT_FOR_AUTOFILL_NO	The	view	is	not	important	for	autofill,	but	its	children	(if	any)	will	be	traversed.	int	IMPORTANT_FOR_AUTOFILL_NO_EXCLUDE_DESCENDANTS	The	view	is	not	important	for
autofill,	and	its	children	(if	any)	will	not	be	traversed.	int	IMPORTANT_FOR_AUTOFILL_YES	The	view	is	important	for	autofill,	and	its	children	(if	any)	will	be	traversed.	int	IMPORTANT_FOR_AUTOFILL_YES_EXCLUDE_DESCENDANTS	The	view	is	important	for	autofill,	but	its	children	(if	any)	will	not	be	traversed.	int
IMPORTANT_FOR_CONTENT_CAPTURE_AUTO	Automatically	determine	whether	a	view	is	important	for	content	capture.	int	IMPORTANT_FOR_CONTENT_CAPTURE_NO	The	view	is	not	important	for	content	capture,	but	its	children	(if	any)	will	be	traversed.	int	IMPORTANT_FOR_CONTENT_CAPTURE_NO_EXCLUDE_DESCENDANTS	The	view	is
not	important	for	content	capture,	and	its	children	(if	any)	will	not	be	traversed.	int	IMPORTANT_FOR_CONTENT_CAPTURE_YES	The	view	is	important	for	content	capture,	and	its	children	(if	any)	will	be	traversed.	int	IMPORTANT_FOR_CONTENT_CAPTURE_YES_EXCLUDE_DESCENDANTS	The	view	is	important	for	content	capture,	but	its	children
(if	any)	will	not	be	traversed.	int	INVISIBLE	This	view	is	invisible,	but	it	still	takes	up	space	for	layout	purposes.	int	KEEP_SCREEN_ON	View	flag	indicating	that	the	screen	should	remain	on	while	the	window	containing	this	view	is	visible	to	the	user.	int	LAYER_TYPE_HARDWARE	Indicates	that	the	view	has	a	hardware	layer.	int	LAYER_TYPE_NONE
Indicates	that	the	view	does	not	have	a	layer.	int	LAYER_TYPE_SOFTWARE	Indicates	that	the	view	has	a	software	layer.	int	LAYOUT_DIRECTION_INHERIT	Horizontal	layout	direction	of	this	view	is	inherited	from	its	parent.	int	LAYOUT_DIRECTION_LOCALE	Horizontal	layout	direction	of	this	view	is	from	deduced	from	the	default	language	script	for
the	locale.	int	LAYOUT_DIRECTION_LTR	Horizontal	layout	direction	of	this	view	is	from	Left	to	Right.	int	LAYOUT_DIRECTION_RTL	Horizontal	layout	direction	of	this	view	is	from	Right	to	Left.	int	MEASURED_HEIGHT_STATE_SHIFT	Bit	shift	of	MEASURED_STATE_MASK	to	get	to	the	height	bits	for	functions	that	combine	both	width	and	height	into
a	single	int,	such	as	getMeasuredState()	and	the	childState	argument	of	resolveSizeAndState(int,	int,	int).	int	MEASURED_SIZE_MASK	Bits	of	getMeasuredWidthAndState()	and	getMeasuredWidthAndState()	that	provide	the	actual	measured	size.	int	MEASURED_STATE_MASK	Bits	of	getMeasuredWidthAndState()	and	getMeasuredWidthAndState()
that	provide	the	additional	state	bits.	int	MEASURED_STATE_TOO_SMALL	Bit	of	getMeasuredWidthAndState()	and	getMeasuredWidthAndState()	that	indicates	the	measured	size	is	smaller	that	the	space	the	view	would	like	to	have.	int	NOT_FOCUSABLE	This	view	does	not	want	keystrokes.	int	NO_ID	Used	to	mark	a	View	that	has	no	ID.	int
OVER_SCROLL_ALWAYS	Always	allow	a	user	to	over-scroll	this	view,	provided	it	is	a	view	that	can	scroll.	int	OVER_SCROLL_IF_CONTENT_SCROLLS	Allow	a	user	to	over-scroll	this	view	only	if	the	content	is	large	enough	to	meaningfully	scroll,	provided	it	is	a	view	that	can	scroll.	int	OVER_SCROLL_NEVER	Never	allow	a	user	to	over-scroll	this	view.
int	SCREEN_STATE_OFF	Indicates	that	the	screen	has	changed	state	and	is	now	off.	int	SCREEN_STATE_ON	Indicates	that	the	screen	has	changed	state	and	is	now	on.	int	SCROLLBARS_INSIDE_INSET	The	scrollbar	style	to	display	the	scrollbars	inside	the	padded	area,	increasing	the	padding	of	the	view.	int	SCROLLBARS_INSIDE_OVERLAY	The
scrollbar	style	to	display	the	scrollbars	inside	the	content	area,	without	increasing	the	padding.	int	SCROLLBARS_OUTSIDE_INSET	The	scrollbar	style	to	display	the	scrollbars	at	the	edge	of	the	view,	increasing	the	padding	of	the	view.	int	SCROLLBARS_OUTSIDE_OVERLAY	The	scrollbar	style	to	display	the	scrollbars	at	the	edge	of	the	view,	without
increasing	the	padding.	int	SCROLLBAR_POSITION_DEFAULT	Position	the	scroll	bar	at	the	default	position	as	determined	by	the	system.	int	SCROLLBAR_POSITION_LEFT	Position	the	scroll	bar	along	the	left	edge.	int	SCROLLBAR_POSITION_RIGHT	Position	the	scroll	bar	along	the	right	edge.	int	SCROLL_AXIS_HORIZONTAL	Indicates	scrolling
along	the	horizontal	axis.	int	SCROLL_AXIS_NONE	Indicates	no	axis	of	view	scrolling.	int	SCROLL_AXIS_VERTICAL	Indicates	scrolling	along	the	vertical	axis.	int	SCROLL_CAPTURE_HINT_AUTO	The	content	of	this	view	will	be	considered	for	scroll	capture	if	scrolling	is	possible.	int	SCROLL_CAPTURE_HINT_EXCLUDE	Explicitly	exclude	this	view	as
a	potential	scroll	capture	target.	int	SCROLL_CAPTURE_HINT_EXCLUDE_DESCENDANTS	Explicitly	exclude	all	children	of	this	view	as	potential	scroll	capture	targets.	int	SCROLL_CAPTURE_HINT_INCLUDE	Explicitly	include	this	view	as	a	potential	scroll	capture	target.	int	SCROLL_INDICATOR_BOTTOM	Scroll	indicator	direction	for	the	bottom
edge	of	the	view.	int	SCROLL_INDICATOR_END	Scroll	indicator	direction	for	the	ending	edge	of	the	view.	int	SCROLL_INDICATOR_LEFT	Scroll	indicator	direction	for	the	left	edge	of	the	view.	int	SCROLL_INDICATOR_RIGHT	Scroll	indicator	direction	for	the	right	edge	of	the	view.	int	SCROLL_INDICATOR_START	Scroll	indicator	direction	for	the
starting	edge	of	the	view.	int	SCROLL_INDICATOR_TOP	Scroll	indicator	direction	for	the	top	edge	of	the	view.	int	SOUND_EFFECTS_ENABLED	View	flag	indicating	whether	this	view	should	have	sound	effects	enabled	for	events	such	as	clicking	and	touching.	int	STATUS_BAR_HIDDEN	This	constant	was	deprecated	in	API	level	15.	Use
SYSTEM_UI_FLAG_LOW_PROFILE	instead.	int	STATUS_BAR_VISIBLE	This	constant	was	deprecated	in	API	level	15.	Use	SYSTEM_UI_FLAG_VISIBLE	instead.	int	SYSTEM_UI_FLAG_FULLSCREEN	This	constant	was	deprecated	in	API	level	30.	Use	WindowInsetsController#hide(int)	with	Type#statusBars()	instead.	int
SYSTEM_UI_FLAG_HIDE_NAVIGATION	This	constant	was	deprecated	in	API	level	30.	Use	WindowInsetsController#hide(int)	with	Type#navigationBars()	instead.	int	SYSTEM_UI_FLAG_IMMERSIVE	This	constant	was	deprecated	in	API	level	30.	Use	WindowInsetsController#BEHAVIOR_DEFAULT	instead.	int	SYSTEM_UI_FLAG_IMMERSIVE_STICKY
This	constant	was	deprecated	in	API	level	30.	Use	WindowInsetsController#BEHAVIOR_SHOW_TRANSIENT_BARS_BY_SWIPE	instead.	int	SYSTEM_UI_FLAG_LAYOUT_FULLSCREEN	This	constant	was	deprecated	in	API	level	30.	For	floating	windows,	use	LayoutParams#setFitInsetsTypes(int)	with	Type#statusBars()	()}.	For	non-floating	windows
that	fill	the	screen,	call	Window#setDecorFitsSystemWindows(boolean)	with	false.	int	SYSTEM_UI_FLAG_LAYOUT_HIDE_NAVIGATION	This	constant	was	deprecated	in	API	level	30.	For	floating	windows,	use	LayoutParams#setFitInsetsTypes(int)	with	Type#navigationBars().	For	non-floating	windows	that	fill	the	screen,	call
Window#setDecorFitsSystemWindows(boolean)	with	false.	int	SYSTEM_UI_FLAG_LAYOUT_STABLE	This	constant	was	deprecated	in	API	level	30.	Use	WindowInsets#getInsetsIgnoringVisibility(int)	instead	to	retrieve	insets	that	don't	change	when	system	bars	change	visibility	state.	int	SYSTEM_UI_FLAG_LIGHT_NAVIGATION_BAR	This	constant	was
deprecated	in	API	level	30.	Use	WindowInsetsController#APPEARANCE_LIGHT_NAVIGATION_BARS	instead.	int	SYSTEM_UI_FLAG_LIGHT_STATUS_BAR	This	constant	was	deprecated	in	API	level	30.	Use	WindowInsetsController#APPEARANCE_LIGHT_STATUS_BARS	instead.	int	SYSTEM_UI_FLAG_LOW_PROFILE	This	constant	was	deprecated	in
API	level	30.	Low	profile	mode	is	deprecated.	Hide	the	system	bars	instead	if	the	application	needs	to	be	in	a	unobtrusive	mode.	Use	WindowInsetsController#hide(int)	with	Type#systemBars().	int	SYSTEM_UI_FLAG_VISIBLE	This	constant	was	deprecated	in	API	level	30.	SystemUiVisibility	flags	are	deprecated.	Use	WindowInsetsController	instead.
int	SYSTEM_UI_LAYOUT_FLAGS	This	constant	was	deprecated	in	API	level	30.	System	UI	layout	flags	are	deprecated.	int	TEXT_ALIGNMENT_CENTER	Center	the	paragraph,	e.g.	ALIGN_CENTER.	int	TEXT_ALIGNMENT_GRAVITY	Default	for	the	root	view.	int	TEXT_ALIGNMENT_INHERIT	Default	text	alignment.	int	TEXT_ALIGNMENT_TEXT_END
Align	to	the	end	of	the	paragraph,	e.g.	ALIGN_OPPOSITE.	int	TEXT_ALIGNMENT_TEXT_START	Align	to	the	start	of	the	paragraph,	e.g.	ALIGN_NORMAL.	int	TEXT_ALIGNMENT_VIEW_END	Align	to	the	end	of	the	view,	which	is	ALIGN_RIGHT	if	the	view's	resolved	layoutDirection	is	LTR,	and	ALIGN_LEFT	otherwise.	int
TEXT_ALIGNMENT_VIEW_START	Align	to	the	start	of	the	view,	which	is	ALIGN_LEFT	if	the	view's	resolved	layoutDirection	is	LTR,	and	ALIGN_RIGHT	otherwise.	int	TEXT_DIRECTION_ANY_RTL	Text	direction	is	using	"any-RTL"	algorithm.	int	TEXT_DIRECTION_FIRST_STRONG	Text	direction	is	using	"first	strong	algorithm".	int
TEXT_DIRECTION_FIRST_STRONG_LTR	Text	direction	is	using	"first	strong	algorithm".	int	TEXT_DIRECTION_FIRST_STRONG_RTL	Text	direction	is	using	"first	strong	algorithm".	int	TEXT_DIRECTION_INHERIT	Text	direction	is	inherited	through	ViewGroup	int	TEXT_DIRECTION_LOCALE	Text	direction	is	coming	from	the	system	Locale.	int
TEXT_DIRECTION_LTR	Text	direction	is	forced	to	LTR.	int	TEXT_DIRECTION_RTL	Text	direction	is	forced	to	RTL.	String	VIEW_LOG_TAG	The	logging	tag	used	by	this	class	with	android.util.Log.	int	VISIBLE	This	view	is	visible.	From	class	android.view.View	public	static	final	Property	ALPHA	A	Property	wrapper	around	the	alpha	functionality
handled	by	the	View#setAlpha(float)	and	View#getAlpha()	methods.	protected	static	final	int[]	EMPTY_STATE_SET	Indicates	the	view	has	no	states	set.	protected	static	final	int[]	ENABLED_FOCUSED_SELECTED_STATE_SET	Indicates	the	view	is	enabled,	focused	and	selected.	protected	static	final	int[]
ENABLED_FOCUSED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	enabled,	focused,	selected	and	its	window	has	the	focus.	protected	static	final	int[]	ENABLED_FOCUSED_STATE_SET	Indicates	the	view	is	enabled	and	has	the	focus.	protected	static	final	int[]	ENABLED_FOCUSED_WINDOW_FOCUSED_STATE_SET	Indicates
the	view	is	enabled,	focused	and	its	window	has	the	focus.	protected	static	final	int[]	ENABLED_SELECTED_STATE_SET	Indicates	the	view	is	enabled	and	selected.	protected	static	final	int[]	ENABLED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	enabled,	selected	and	its	window	has	the	focus.	protected	static	final	int[]
ENABLED_STATE_SET	Indicates	the	view	is	enabled.	protected	static	final	int[]	ENABLED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	enabled	and	that	its	window	has	focus.	protected	static	final	int[]	FOCUSED_SELECTED_STATE_SET	Indicates	the	view	is	focused	and	selected.	protected	static	final	int[]



FOCUSED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	focused,	selected	and	its	window	has	the	focus.	protected	static	final	int[]	FOCUSED_STATE_SET	Indicates	the	view	is	focused.	protected	static	final	int[]	FOCUSED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	has	the	focus	and	that	its	window	has	the	focus.
protected	static	final	int[]	PRESSED_ENABLED_FOCUSED_SELECTED_STATE_SET	Indicates	the	view	is	pressed,	enabled,	focused	and	selected.	protected	static	final	int[]	PRESSED_ENABLED_FOCUSED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	enabled,	focused,	selected	and	its	window	has	the	focus.	protected
static	final	int[]	PRESSED_ENABLED_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	enabled	and	focused.	protected	static	final	int[]	PRESSED_ENABLED_FOCUSED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	enabled,	focused	and	its	window	has	the	focus.	protected	static	final	int[]
PRESSED_ENABLED_SELECTED_STATE_SET	Indicates	the	view	is	pressed,	enabled	and	selected.	protected	static	final	int[]	PRESSED_ENABLED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	enabled,	selected	and	its	window	has	the	focus.	protected	static	final	int[]	PRESSED_ENABLED_STATE_SET	Indicates	the	view
is	pressed	and	enabled.	protected	static	final	int[]	PRESSED_ENABLED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	enabled	and	its	window	has	the	focus.	protected	static	final	int[]	PRESSED_FOCUSED_SELECTED_STATE_SET	Indicates	the	view	is	pressed,	focused	and	selected.	protected	static	final	int[]
PRESSED_FOCUSED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	focused,	selected	and	its	window	has	the	focus.	protected	static	final	int[]	PRESSED_FOCUSED_STATE_SET	Indicates	the	view	is	pressed	and	focused.	protected	static	final	int[]	PRESSED_FOCUSED_WINDOW_FOCUSED_STATE_SET	Indicates	the
view	is	pressed,	focused	and	its	window	has	the	focus.	protected	static	final	int[]	PRESSED_SELECTED_STATE_SET	Indicates	the	view	is	pressed	and	selected.	protected	static	final	int[]	PRESSED_SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed,	selected	and	its	window	has	the	focus.	protected	static	final	int[]
PRESSED_STATE_SET	Indicates	the	view	is	pressed.	protected	static	final	int[]	PRESSED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	pressed	and	its	window	has	the	focus.	public	static	final	Property	ROTATION	A	Property	wrapper	around	the	rotation	functionality	handled	by	the	View#setRotation(float)	and	View#getRotation()	methods.
public	static	final	Property	ROTATION_X	A	Property	wrapper	around	the	rotationX	functionality	handled	by	the	View#setRotationX(float)	and	View#getRotationX()	methods.	public	static	final	Property	ROTATION_Y	A	Property	wrapper	around	the	rotationY	functionality	handled	by	the	View#setRotationY(float)	and	View#getRotationY()	methods.
public	static	final	Property	SCALE_X	A	Property	wrapper	around	the	scaleX	functionality	handled	by	the	View#setScaleX(float)	and	View#getScaleX()	methods.	public	static	final	Property	SCALE_Y	A	Property	wrapper	around	the	scaleY	functionality	handled	by	the	View#setScaleY(float)	and	View#getScaleY()	methods.	protected	static	final	int[]
SELECTED_STATE_SET	Indicates	the	view	is	selected.	protected	static	final	int[]	SELECTED_WINDOW_FOCUSED_STATE_SET	Indicates	the	view	is	selected	and	that	its	window	has	the	focus.	public	static	final	Property	TRANSLATION_X	A	Property	wrapper	around	the	translationX	functionality	handled	by	the	View#setTranslationX(float)	and
View#getTranslationX()	methods.	public	static	final	Property	TRANSLATION_Y	A	Property	wrapper	around	the	translationY	functionality	handled	by	the	View#setTranslationY(float)	and	View#getTranslationY()	methods.	public	static	final	Property	TRANSLATION_Z	A	Property	wrapper	around	the	translationZ	functionality	handled	by	the
View#setTranslationZ(float)	and	View#getTranslationZ()	methods.	protected	static	final	int[]	WINDOW_FOCUSED_STATE_SET	Indicates	the	view's	window	has	focus.	public	static	final	Property	X	A	Property	wrapper	around	the	x	functionality	handled	by	the	View#setX(float)	and	View#getX()	methods.	public	static	final	Property	Y	A	Property
wrapper	around	the	y	functionality	handled	by	the	View#setY(float)	and	View#getY()	methods.	public	static	final	Property	Z	A	Property	wrapper	around	the	z	functionality	handled	by	the	View#setZ(float)	and	View#getZ()	methods.	WebView(Context	context)	Constructs	a	new	WebView	with	an	Activity	Context	object.	WebView(Context	context,
AttributeSet	attrs)	Constructs	a	new	WebView	with	layout	parameters.	WebView(Context	context,	AttributeSet	attrs,	int	defStyleAttr)	Constructs	a	new	WebView	with	layout	parameters	and	a	default	style.	WebView(Context	context,	AttributeSet	attrs,	int	defStyleAttr,	int	defStyleRes)	Constructs	a	new	WebView	with	layout	parameters	and	a	default
style.	WebView(Context	context,	AttributeSet	attrs,	int	defStyleAttr,	boolean	privateBrowsing)	This	constructor	is	deprecated.	Private	browsing	is	no	longer	supported	directly	via	WebView	and	will	be	removed	in	a	future	release.	Prefer	using	WebSettings,	WebViewDatabase,	CookieManager	and	WebStorage	for	fine-grained	control	of	privacy	data.
void	addJavascriptInterface(Object	object,	String	name)	Injects	the	supplied	Java	object	into	this	WebView.	void	autofill(SparseArray	values)	Automatically	fills	the	content	of	the	virtual	children	within	this	view.	boolean	canGoBack()	Gets	whether	this	WebView	has	a	back	history	item.	boolean	canGoBackOrForward(int	steps)	Gets	whether	the	page
can	go	back	or	forward	the	given	number	of	steps.	boolean	canGoForward()	Gets	whether	this	WebView	has	a	forward	history	item.	boolean	canZoomIn()	This	method	was	deprecated	in	API	level	17.	This	method	is	prone	to	inaccuracy	due	to	race	conditions	between	the	web	rendering	and	UI	threads;	prefer	WebViewClient#onScaleChanged.	boolean
canZoomOut()	This	method	was	deprecated	in	API	level	17.	This	method	is	prone	to	inaccuracy	due	to	race	conditions	between	the	web	rendering	and	UI	threads;	prefer	WebViewClient#onScaleChanged.	Picture	capturePicture()	This	method	was	deprecated	in	API	level	19.	Use	onDraw(Canvas)	to	obtain	a	bitmap	snapshot	of	the	WebView,	or
saveWebArchive(String)	to	save	the	content	to	a	file.	void	clearCache(boolean	includeDiskFiles)	Clears	the	resource	cache.	static	void	clearClientCertPreferences(Runnable	onCleared)	Clears	the	client	certificate	preferences	stored	in	response	to	proceeding/cancelling	client	cert	requests.	void	clearFormData()	Removes	the	autocomplete	popup	from
the	currently	focused	form	field,	if	present.	void	clearHistory()	Tells	this	WebView	to	clear	its	internal	back/forward	list.	void	clearMatches()	Clears	the	highlighting	surrounding	text	matches	created	by	findAllAsync(String).	void	clearSslPreferences()	Clears	the	SSL	preferences	table	stored	in	response	to	proceeding	with	SSL	certificate	errors.	void
clearView()	This	method	was	deprecated	in	API	level	18.	Use	WebView.loadUrl("about:blank")	to	reliably	reset	the	view	state	and	release	page	resources	(including	any	running	JavaScript).	void	computeScroll()	Called	by	a	parent	to	request	that	a	child	update	its	values	for	mScrollX	and	mScrollY	if	necessary.	WebBackForwardList
copyBackForwardList()	Gets	the	WebBackForwardList	for	this	WebView.	PrintDocumentAdapter	createPrintDocumentAdapter(String	documentName)	Creates	a	PrintDocumentAdapter	that	provides	the	content	of	this	WebView	for	printing.	PrintDocumentAdapter	createPrintDocumentAdapter()	This	method	was	deprecated	in	API	level	21.	Use
createPrintDocumentAdapter(java.lang.String)	which	requires	user	to	provide	a	print	document	name.	WebMessagePort[]	createWebMessageChannel()	Creates	a	message	channel	to	communicate	with	JS	and	returns	the	message	ports	that	represent	the	endpoints	of	this	message	channel.	void	destroy()	Destroys	the	internal	state	of	this	WebView.
static	void	disableWebView()	Indicate	that	the	current	process	does	not	intend	to	use	WebView,	and	that	an	exception	should	be	thrown	if	a	WebView	is	created	or	any	other	methods	in	the	android.webkit	package	are	used.	void	dispatchCreateViewTranslationRequest(Map	viewIds,	int[]	supportedFormats,	TranslationCapability	capability,	List
requests)	Dispatch	to	collect	the	ViewTranslationRequests	for	translation	purpose	by	traversing	the	hierarchy	when	the	app	requests	ui	translation.	The	implementation	calls	dispatchCreateViewTranslationRequest(Map,	int[],	TranslationCapability,	List)	for	all	the	child	views.	boolean	dispatchKeyEvent(KeyEvent	event)	Dispatch	a	key	event	to	the	next
view	on	the	focus	path.	void	documentHasImages(Message	response)	Queries	the	document	to	see	if	it	contains	any	image	references.	static	void	enableSlowWholeDocumentDraw()	For	apps	targeting	the	L	release,	WebView	has	a	new	default	behavior	that	reduces	memory	footprint	and	increases	performance	by	intelligently	choosing	the	portion	of
the	HTML	document	that	needs	to	be	drawn.	void	evaluateJavascript(String	script,	ValueCallback	resultCallback)	Asynchronously	evaluates	JavaScript	in	the	context	of	the	currently	displayed	page.	static	String	findAddress(String	addr)	This	method	was	deprecated	in	API	level	28.	This	method	is	superseded	by	TextClassifier#generateLinks(
android.view.textclassifier.TextLinks.Request).	Avoid	using	this	method	even	when	targeting	API	levels	where	no	alternative	is	available.	int	findAll(String	find)	This	method	was	deprecated	in	API	level	16.	findAllAsync(String)	is	preferred.	void	findAllAsync(String	find)	Finds	all	instances	of	find	on	the	page	and	highlights	them,	asynchronously.	View
findFocus()	Find	the	view	in	the	hierarchy	rooted	at	this	view	that	currently	has	focus.	void	findNext(boolean	forward)	Highlights	and	scrolls	to	the	next	match	found	by	findAllAsync(String),	wrapping	around	page	boundaries	as	necessary.	void	flingScroll(int	vx,	int	vy)	void	freeMemory()	This	method	was	deprecated	in	API	level	19.	Memory	caches
are	automatically	dropped	when	no	longer	needed,	and	in	response	to	system	memory	pressure.	CharSequence	getAccessibilityClassName()	Return	the	class	name	of	this	object	to	be	used	for	accessibility	purposes.	AccessibilityNodeProvider	getAccessibilityNodeProvider()	Gets	the	provider	for	managing	a	virtual	view	hierarchy	rooted	at	this	View
and	reported	to	AccessibilityServices	that	explore	the	window	content.	SslCertificate	getCertificate()	Gets	the	SSL	certificate	for	the	main	top-level	page	or	null	if	there	is	no	certificate	(the	site	is	not	secure).	int	getContentHeight()	Gets	the	height	of	the	HTML	content.	static	PackageInfo	getCurrentWebViewPackage()	If	WebView	has	already	been
loaded	into	the	current	process	this	method	will	return	the	package	that	was	used	to	load	it.	Bitmap	getFavicon()	Gets	the	favicon	for	the	current	page.	Handler	getHandler()	WebView.HitTestResult	getHitTestResult()	Gets	a	HitTestResult	based	on	the	current	cursor	node.	String[]	getHttpAuthUsernamePassword(String	host,	String	realm)	This
method	was	deprecated	in	API	level	26.	Use	WebViewDatabase#getHttpAuthUsernamePassword	instead	String	getOriginalUrl()	Gets	the	original	URL	for	the	current	page.	int	getProgress()	Gets	the	progress	for	the	current	page.	boolean	getRendererPriorityWaivedWhenNotVisible()	Return	whether	this	WebView	requests	a	priority	of
RENDERER_PRIORITY_WAIVED	when	not	visible.	int	getRendererRequestedPriority()	Get	the	requested	renderer	priority	for	this	WebView.	static	Uri	getSafeBrowsingPrivacyPolicyUrl()	Returns	a	URL	pointing	to	the	privacy	policy	for	Safe	Browsing	reporting.	float	getScale()	This	method	was	deprecated	in	API	level	17.	This	method	is	prone	to
inaccuracy	due	to	race	conditions	between	the	web	rendering	and	UI	threads;	prefer	WebViewClient#onScaleChanged.	WebSettings	getSettings()	Gets	the	WebSettings	object	used	to	control	the	settings	for	this	WebView.	TextClassifier	getTextClassifier()	Returns	the	TextClassifier	used	by	this	WebView.	String	getTitle()	Gets	the	title	for	the	current
page.	String	getUrl()	Gets	the	URL	for	the	current	page.	WebChromeClient	getWebChromeClient()	Gets	the	chrome	handler.	static	ClassLoader	getWebViewClassLoader()	Returns	the	ClassLoader	used	to	load	internal	WebView	classes.	WebViewClient	getWebViewClient()	Gets	the	WebViewClient.	Looper	getWebViewLooper()	Returns	the	Looper
corresponding	to	the	thread	on	which	WebView	calls	must	be	made.	WebViewRenderProcess	getWebViewRenderProcess()	Gets	a	handle	to	the	WebView	renderer	process	associated	with	this	WebView.	WebViewRenderProcessClient	getWebViewRenderProcessClient()	Gets	the	renderer	client	object	associated	with	this	WebView.	void	goBack()	Goes
back	in	the	history	of	this	WebView.	void	goBackOrForward(int	steps)	Goes	to	the	history	item	that	is	the	number	of	steps	away	from	the	current	item.	void	goForward()	Goes	forward	in	the	history	of	this	WebView.	void	invokeZoomPicker()	Invokes	the	graphical	zoom	picker	widget	for	this	WebView.	boolean	isPrivateBrowsingEnabled()	Gets	whether
private	browsing	is	enabled	in	this	WebView.	boolean	isVisibleToUserForAutofill(int	virtualId)	Computes	whether	this	virtual	autofill	view	is	visible	to	the	user.	void	loadData(String	data,	String	mimeType,	String	encoding)	Loads	the	given	data	into	this	WebView	using	a	'data'	scheme	URL.	void	loadDataWithBaseURL(String	baseUrl,	String	data,
String	mimeType,	String	encoding,	String	historyUrl)	Loads	the	given	data	into	this	WebView,	using	baseUrl	as	the	base	URL	for	the	content.	void	loadUrl(String	url)	Loads	the	given	URL.	void	loadUrl(String	url,	Map	additionalHttpHeaders)	Loads	the	given	URL	with	additional	HTTP	headers,	specified	as	a	map	from	name	to	value.	WindowInsets
onApplyWindowInsets(WindowInsets	insets)	Called	when	the	view	should	apply	WindowInsets	according	to	its	internal	policy.	boolean	onCheckIsTextEditor()	Check	whether	the	called	view	is	a	text	editor,	in	which	case	it	would	make	sense	to	automatically	display	a	soft	input	window	for	it.	void	onChildViewAdded(View	parent,	View	child)	This
method	is	deprecated.	WebView	no	longer	needs	to	implement	ViewGroup.OnHierarchyChangeListener.	This	method	does	nothing	now.	void	onChildViewRemoved(View	p,	View	child)	This	method	is	deprecated.	WebView	no	longer	needs	to	implement	ViewGroup.OnHierarchyChangeListener.	This	method	does	nothing	now.	InputConnection
onCreateInputConnection(EditorInfo	outAttrs)	Creates	a	new	InputConnection	for	an	InputMethod	to	interact	with	the	WebView.	void	onCreateVirtualViewTranslationRequests(long[]	virtualIds,	int[]	supportedFormats,	Consumer	requestsCollector)	Collects	ViewTranslationRequests	which	represents	the	content	to	be	translated	for	the	virtual	views	in
the	host	view.	boolean	onDragEvent(DragEvent	event)	Handles	drag	events	sent	by	the	system	following	a	call	to	startDragAndDrop().	void	onFinishTemporaryDetach()	Called	after	onStartTemporaryDetach()	when	the	container	is	done	changing	the	view.	boolean	onGenericMotionEvent(MotionEvent	event)	Implement	this	method	to	handle	generic
motion	events.	void	onGlobalFocusChanged(View	oldFocus,	View	newFocus)	This	method	is	deprecated.	WebView	should	not	have	implemented	ViewTreeObserver.OnGlobalFocusChangeListener.	This	method	does	nothing	now.	boolean	onHoverEvent(MotionEvent	event)	Implement	this	method	to	handle	hover	events.	boolean	onKeyDown(int
keyCode,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyDown():	perform	press	of	the	view	when	KeyEvent#KEYCODE_DPAD_CENTER	or	KeyEvent#KEYCODE_ENTER	is	released,	if	the	view	is	enabled	and	clickable.	boolean	onKeyMultiple(int	keyCode,	int	repeatCount,	KeyEvent	event)	Default	implementation	of
KeyEvent.Callback.onKeyMultiple():	always	returns	false	(doesn't	handle	the	event).	boolean	onKeyUp(int	keyCode,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyUp():	perform	clicking	of	the	view	when	KeyEvent#KEYCODE_DPAD_CENTER,	KeyEvent#KEYCODE_ENTER	or	KeyEvent#KEYCODE_SPACE	is	released.	void
onPause()	Does	a	best-effort	attempt	to	pause	any	processing	that	can	be	paused	safely,	such	as	animations	and	geolocation.	void	onProvideAutofillVirtualStructure(ViewStructure	structure,	int	flags)	Populates	a	ViewStructure	containing	virtual	children	to	fullfil	an	autofill	request.	The	ViewStructure	traditionally	represents	a	View,	while	for	web
pages	it	represent	HTML	nodes.	void	onProvideContentCaptureStructure(ViewStructure	structure,	int	flags)	Populates	a	ViewStructure	for	content	capture.	void	onProvideVirtualStructure(ViewStructure	structure)	Called	when	assist	structure	is	being	retrieved	from	a	view	as	part	of	Activity.onProvideAssistData	to	generate	additional	virtual
structure	under	this	view.	void	onResume()	Resumes	a	WebView	after	a	previous	call	to	onPause().	void	onStartTemporaryDetach()	This	is	called	when	a	container	is	going	to	temporarily	detach	a	child,	with	ViewGroup.detachViewFromParent.	boolean	onTouchEvent(MotionEvent	event)	Implement	this	method	to	handle	touch	screen	motion	events.
boolean	onTrackballEvent(MotionEvent	event)	Implement	this	method	to	handle	trackball	motion	events.	void	onVirtualViewTranslationResponses(LongSparseArray	response)	Called	when	the	content	from	View#onCreateVirtualViewTranslationRequests	had	been	translated	by	the	TranslationService.	void	onWindowFocusChanged(boolean
hasWindowFocus)	Called	when	the	window	containing	this	view	gains	or	loses	focus.	boolean	overlayHorizontalScrollbar()	This	method	was	deprecated	in	API	level	23.	This	method	is	now	obsolete.	boolean	overlayVerticalScrollbar()	This	method	was	deprecated	in	API	level	23.	This	method	is	now	obsolete.	boolean	pageDown(boolean	bottom)	Scrolls
the	contents	of	this	WebView	down	by	half	the	page	size.	boolean	pageUp(boolean	top)	Scrolls	the	contents	of	this	WebView	up	by	half	the	view	size.	void	pauseTimers()	Pauses	all	layout,	parsing,	and	JavaScript	timers	for	all	WebViews.	boolean	performLongClick()	Calls	this	view's	OnLongClickListener,	if	it	is	defined.	void	postUrl(String	url,	byte[]
postData)	Loads	the	URL	with	postData	using	"POST"	method	into	this	WebView.	void	postVisualStateCallback(long	requestId,	WebView.VisualStateCallback	callback)	Posts	a	VisualStateCallback,	which	will	be	called	when	the	current	state	of	the	WebView	is	ready	to	be	drawn.	void	postWebMessage(WebMessage	message,	Uri	targetOrigin)	Post	a
message	to	main	frame.	void	reload()	Reloads	the	current	URL.	void	removeJavascriptInterface(String	name)	Removes	a	previously	injected	Java	object	from	this	WebView.	boolean	requestChildRectangleOnScreen(View	child,	Rect	rect,	boolean	immediate)	Called	when	a	child	of	this	group	wants	a	particular	rectangle	to	be	positioned	onto	the	screen.
boolean	requestFocus(int	direction,	Rect	previouslyFocusedRect)	Call	this	to	try	to	give	focus	to	a	specific	view	or	to	one	of	its	descendants	and	give	it	hints	about	the	direction	and	a	specific	rectangle	that	the	focus	is	coming	from.	Looks	for	a	view	to	give	focus	to	respecting	the	setting	specified	by	getDescendantFocusability().	void
requestFocusNodeHref(Message	hrefMsg)	Requests	the	anchor	or	image	element	URL	at	the	last	tapped	point.	void	requestImageRef(Message	msg)	Requests	the	URL	of	the	image	last	touched	by	the	user.	WebBackForwardList	restoreState(Bundle	inState)	Restores	the	state	of	this	WebView	from	the	given	Bundle.	void	resumeTimers()	Resumes	all
layout,	parsing,	and	JavaScript	timers	for	all	WebViews.	void	savePassword(String	host,	String	username,	String	password)	This	method	was	deprecated	in	API	level	18.	Saving	passwords	in	WebView	will	not	be	supported	in	future	versions.	WebBackForwardList	saveState(Bundle	outState)	Saves	the	state	of	this	WebView	used	in
Activity.onSaveInstanceState(Bundle).	void	saveWebArchive(String	filename)	Saves	the	current	view	as	a	web	archive.	void	saveWebArchive(String	basename,	boolean	autoname,	ValueCallback	callback)	Saves	the	current	view	as	a	web	archive.	void	setBackgroundColor(int	color)	Sets	the	background	color	for	this	view.	void
setCertificate(SslCertificate	certificate)	This	method	was	deprecated	in	API	level	17.	Calling	this	function	has	no	useful	effect,	and	will	be	ignored	in	future	releases.	static	void	setDataDirectorySuffix(String	suffix)	Define	the	directory	used	to	store	WebView	data	for	the	current	process.	void	setDownloadListener(DownloadListener	listener)	Registers
the	interface	to	be	used	when	content	can	not	be	handled	by	the	rendering	engine,	and	should	be	downloaded	instead.	void	setFindListener(WebView.FindListener	listener)	Registers	the	listener	to	be	notified	as	find-on-page	operations	progress.	void	setHorizontalScrollbarOverlay(boolean	overlay)	This	method	was	deprecated	in	API	level	23.	This
method	has	no	effect.	void	setHttpAuthUsernamePassword(String	host,	String	realm,	String	username,	String	password)	This	method	was	deprecated	in	API	level	26.	Use	WebViewDatabase#setHttpAuthUsernamePassword	instead	void	setInitialScale(int	scaleInPercent)	Sets	the	initial	scale	for	this	WebView.	void	setLayerType(int	layerType,	Paint
paint)	Specifies	the	type	of	layer	backing	this	view.	void	setLayoutParams(ViewGroup.LayoutParams	params)	Set	the	layout	parameters	associated	with	this	view.	void	setMapTrackballToArrowKeys(boolean	setMap)	This	method	was	deprecated	in	API	level	17.	Only	the	default	case,	true,	will	be	supported	in	a	future	version.	void
setNetworkAvailable(boolean	networkUp)	Informs	WebView	of	the	network	state.	void	setOverScrollMode(int	mode)	Set	the	over-scroll	mode	for	this	view.	void	setPictureListener(WebView.PictureListener	listener)	This	method	was	deprecated	in	API	level	15.	This	method	is	now	obsolete.	void	setRendererPriorityPolicy(int	rendererRequestedPriority,
boolean	waivedWhenNotVisible)	Set	the	renderer	priority	policy	for	this	WebView.	static	void	setSafeBrowsingWhitelist(List	hosts,	ValueCallback	callback)	Sets	the	list	of	hosts	(domain	names/IP	addresses)	that	are	exempt	from	SafeBrowsing	checks.	void	setScrollBarStyle(int	style)	Specify	the	style	of	the	scrollbars.	void
setTextClassifier(TextClassifier	textClassifier)	Sets	the	TextClassifier	for	this	WebView.	void	setVerticalScrollbarOverlay(boolean	overlay)	This	method	was	deprecated	in	API	level	23.	This	method	has	no	effect.	void	setWebChromeClient(WebChromeClient	client)	Sets	the	chrome	handler.	static	void	setWebContentsDebuggingEnabled(boolean
enabled)	Enables	debugging	of	web	contents	(HTML	/	CSS	/	JavaScript)	loaded	into	any	WebViews	of	this	application.	void	setWebViewClient(WebViewClient	client)	Sets	the	WebViewClient	that	will	receive	various	notifications	and	requests.	void	setWebViewRenderProcessClient(Executor	executor,	WebViewRenderProcessClient
webViewRenderProcessClient)	Sets	the	renderer	client	object	associated	with	this	WebView.	void	setWebViewRenderProcessClient(WebViewRenderProcessClient	webViewRenderProcessClient)	Sets	the	renderer	client	object	associated	with	this	WebView.	boolean	shouldDelayChildPressedState()	Return	true	if	the	pressed	state	should	be	delayed	for
children	or	descendants	of	this	ViewGroup.	boolean	showFindDialog(String	text,	boolean	showIme)	This	method	was	deprecated	in	API	level	18.	This	method	does	not	work	reliably	on	all	Android	versions;	implementing	a	custom	find	dialog	using	WebView.findAllAsync()	provides	a	more	robust	solution.	static	void	startSafeBrowsing(Context	context,
ValueCallback	callback)	Starts	Safe	Browsing	initialization.	void	stopLoading()	Stops	the	current	load.	void	zoomBy(float	zoomFactor)	Performs	a	zoom	operation	in	this	WebView.	boolean	zoomIn()	Performs	zoom	in	in	this	WebView.	boolean	zoomOut()	Performs	zoom	out	in	this	WebView.	int	computeHorizontalScrollOffset()	Compute	the	horizontal
offset	of	the	horizontal	scrollbar's	thumb	within	the	horizontal	range.	int	computeHorizontalScrollRange()	Compute	the	horizontal	range	that	the	horizontal	scrollbar	represents.	int	computeVerticalScrollExtent()	Compute	the	vertical	extent	of	the	vertical	scrollbar's	thumb	within	the	vertical	range.	int	computeVerticalScrollOffset()	Compute	the
vertical	offset	of	the	vertical	scrollbar's	thumb	within	the	horizontal	range.	int	computeVerticalScrollRange()	Compute	the	vertical	range	that	the	vertical	scrollbar	represents.	void	dispatchDraw(Canvas	canvas)	Called	by	draw	to	draw	the	child	views.	void	onAttachedToWindow()	This	is	called	when	the	view	is	attached	to	a	window.	void
onConfigurationChanged(Configuration	newConfig)	Called	when	the	current	configuration	of	the	resources	being	used	by	the	application	have	changed.	void	onDraw(Canvas	canvas)	Implement	this	to	do	your	drawing.	void	onFocusChanged(boolean	focused,	int	direction,	Rect	previouslyFocusedRect)	Called	by	the	view	system	when	the	focus	state	of
this	view	changes.	void	onMeasure(int	widthMeasureSpec,	int	heightMeasureSpec)	Measure	the	view	and	its	content	to	determine	the	measured	width	and	the	measured	height.	void	onOverScrolled(int	scrollX,	int	scrollY,	boolean	clampedX,	boolean	clampedY)	Called	by	overScrollBy(int,	int,	int,	int,	int,	int,	int,	int,	boolean)	to	respond	to	the	results	of
an	over-scroll	operation.	void	onScrollChanged(int	l,	int	t,	int	oldl,	int	oldt)	This	is	called	in	response	to	an	internal	scroll	in	this	view	(i.e.,	the	view	scrolled	its	own	contents).	void	onSizeChanged(int	w,	int	h,	int	ow,	int	oh)	This	is	called	during	layout	when	the	size	of	this	view	has	changed.	void	onVisibilityChanged(View	changedView,	int	visibility)
Called	when	the	visibility	of	the	view	or	an	ancestor	of	the	view	has	changed.	void	onWindowVisibilityChanged(int	visibility)	Called	when	the	window	containing	has	change	its	visibility	(between	GONE,	INVISIBLE,	and	VISIBLE).	From	class	android.view.ViewGroup	void	addChildrenForAccessibility(ArrayList	outChildren)	Adds	the	children	of	this
View	relevant	for	accessibility	to	the	given	list	as	output.	void	addExtraDataToAccessibilityNodeInfo(AccessibilityNodeInfo	info,	String	extraDataKey,	Bundle	arguments)	Adds	extra	data	to	an	AccessibilityNodeInfo	based	on	an	explicit	request	for	the	additional	data.	void	addFocusables(ArrayList	views,	int	direction,	int	focusableMode)	Adds	any
focusable	views	that	are	descendants	of	this	view	(possibly	including	this	view	if	it	is	focusable	itself)	to	views.	void	addKeyboardNavigationClusters(Collection	views,	int	direction)	Adds	any	keyboard	navigation	cluster	roots	that	are	descendants	of	this	view	(possibly	including	this	view	if	it	is	a	cluster	root	itself)	to	views.	boolean
addStatesFromChildren()	Returns	whether	this	ViewGroup's	drawable	states	also	include	its	children's	drawable	states.	void	addTouchables(ArrayList	views)	Add	any	touchable	views	that	are	descendants	of	this	view	(possibly	including	this	view	if	it	is	touchable	itself)	to	views.	void	addView(View	child,	ViewGroup.LayoutParams	params)	Adds	a	child
view	with	the	specified	layout	parameters.	void	addView(View	child,	int	index)	Adds	a	child	view.	void	addView(View	child,	int	index,	ViewGroup.LayoutParams	params)	Adds	a	child	view	with	the	specified	layout	parameters.	void	addView(View	child)	Adds	a	child	view.	void	addView(View	child,	int	width,	int	height)	Adds	a	child	view	with	this
ViewGroup's	default	layout	parameters	and	the	specified	width	and	height.	boolean	addViewInLayout(View	child,	int	index,	ViewGroup.LayoutParams	params,	boolean	preventRequestLayout)	Adds	a	view	during	layout.	boolean	addViewInLayout(View	child,	int	index,	ViewGroup.LayoutParams	params)	Adds	a	view	during	layout.	void
attachLayoutAnimationParameters(View	child,	ViewGroup.LayoutParams	params,	int	index,	int	count)	Subclasses	should	override	this	method	to	set	layout	animation	parameters	on	the	supplied	child.	void	attachViewToParent(View	child,	int	index,	ViewGroup.LayoutParams	params)	Attaches	a	view	to	this	view	group.	void	bringChildToFront(View
child)	Change	the	z	order	of	the	child	so	it's	on	top	of	all	other	children.	boolean	canAnimate()	Indicates	whether	the	view	group	has	the	ability	to	animate	its	children	after	the	first	layout.	boolean	checkLayoutParams(ViewGroup.LayoutParams	p)	void	childDrawableStateChanged(View	child)	If	addStatesFromChildren()	is	true,	refreshes	this	group's
drawable	state	(to	include	the	states	from	its	children).	void	childHasTransientStateChanged(View	child,	boolean	childHasTransientState)	Called	when	a	child	view	has	changed	whether	or	not	it	is	tracking	transient	state.	void	cleanupLayoutState(View	child)	Prevents	the	specified	child	to	be	laid	out	during	the	next	layout	pass.	void
clearChildFocus(View	child)	Called	when	a	child	of	this	parent	is	giving	up	focus	void	clearDisappearingChildren()	Removes	any	pending	animations	for	views	that	have	been	removed.	void	clearFocus()	Called	when	this	view	wants	to	give	up	focus.	void	debug(int	depth)	void	detachAllViewsFromParent()	Detaches	all	views	from	the	parent.	void
detachViewFromParent(int	index)	Detaches	a	view	from	its	parent.	void	detachViewFromParent(View	child)	Detaches	a	view	from	its	parent.	void	detachViewsFromParent(int	start,	int	count)	Detaches	a	range	of	views	from	their	parents.	WindowInsets	dispatchApplyWindowInsets(WindowInsets	insets)	Request	to	apply	the	given	window	insets	to	this
view	or	another	view	in	its	subtree.	boolean	dispatchCapturedPointerEvent(MotionEvent	event)	Pass	a	captured	pointer	event	down	to	the	focused	view.	void	dispatchConfigurationChanged(Configuration	newConfig)	Dispatch	a	notification	about	a	resource	configuration	change	down	the	view	hierarchy.	void
dispatchCreateViewTranslationRequest(Map	viewIds,	int[]	supportedFormats,	TranslationCapability	capability,	List	requests)	Dispatch	to	collect	the	ViewTranslationRequests	for	translation	purpose	by	traversing	the	hierarchy	when	the	app	requests	ui	translation.	The	implementation	calls	dispatchCreateViewTranslationRequest(Map,	int[],
TranslationCapability,	List)	for	all	the	child	views.	void	dispatchDisplayHint(int	hint)	Dispatch	a	hint	about	whether	this	view	is	displayed.	boolean	dispatchDragEvent(DragEvent	event)	Detects	if	this	View	is	enabled	and	has	a	drag	event	listener.	void	dispatchDraw(Canvas	canvas)	Called	by	draw	to	draw	the	child	views.	void
dispatchDrawableHotspotChanged(float	x,	float	y)	Dispatches	drawable	hotspot	changes	to	child	views	that	meet	at	least	one	of	the	following	criteria:	void	dispatchFreezeSelfOnly(SparseArray	container)	Perform	dispatching	of	a	View.saveHierarchyState(android.util.SparseArray)	freeze()}	to	only	this	view,	not	to	its	children.	boolean
dispatchGenericFocusedEvent(MotionEvent	event)	Dispatch	a	generic	motion	event	to	the	currently	focused	view.	boolean	dispatchGenericPointerEvent(MotionEvent	event)	Dispatch	a	generic	motion	event	to	the	view	under	the	first	pointer.	boolean	dispatchHoverEvent(MotionEvent	event)	Dispatch	a	hover	event.	boolean
dispatchKeyEvent(KeyEvent	event)	Dispatch	a	key	event	to	the	next	view	on	the	focus	path.	boolean	dispatchKeyEventPreIme(KeyEvent	event)	Dispatch	a	key	event	before	it	is	processed	by	any	input	method	associated	with	the	view	hierarchy.	boolean	dispatchKeyShortcutEvent(KeyEvent	event)	Dispatches	a	key	shortcut	event.	void
dispatchPointerCaptureChanged(boolean	hasCapture)	void	dispatchProvideAutofillStructure(ViewStructure	structure,	int	flags)	Dispatches	creation	of	a	ViewStructures	for	autofill	purposes	down	the	hierarchy,	when	an	Assist	structure	is	being	created	as	part	of	an	autofill	request.	This	implementation	adds	in	all	child	views	of	the	view	group,	in
addition	to	calling	the	default	View	implementation.	void	dispatchProvideStructure(ViewStructure	structure)	Dispatch	creation	of	ViewStructure	down	the	hierarchy.	void	dispatchRestoreInstanceState(SparseArray	container)	Called	by	restoreHierarchyState(android.util.SparseArray)	to	retrieve	the	state	for	this	view	and	its	children.	void
dispatchSaveInstanceState(SparseArray	container)	Called	by	saveHierarchyState(android.util.SparseArray)	to	store	the	state	for	this	view	and	its	children.	void	dispatchScrollCaptureSearch(Rect	localVisibleRect,	Point	windowOffset,	Consumer	targets)	Handle	the	scroll	capture	search	request	by	checking	this	view	if	applicable,	then	to	each	child
view.	void	dispatchSetActivated(boolean	activated)	Dispatch	setActivated	to	all	of	this	View's	children.	void	dispatchSetPressed(boolean	pressed)	Dispatch	setPressed	to	all	of	this	View's	children.	void	dispatchSetSelected(boolean	selected)	Dispatch	setSelected	to	all	of	this	View's	children.	void	dispatchSystemUiVisibilityChanged(int	visible)	This
method	is	deprecated.	Use	WindowInsets#isVisible(int)	to	find	out	about	system	bar	visibilities	by	setting	a	OnApplyWindowInsetsListener	on	this	view.	void	dispatchThawSelfOnly(SparseArray	container)	Perform	dispatching	of	a	View.restoreHierarchyState(android.util.SparseArray)	to	only	this	view,	not	to	its	children.	boolean
dispatchTouchEvent(MotionEvent	ev)	Pass	the	touch	screen	motion	event	down	to	the	target	view,	or	this	view	if	it	is	the	target.	boolean	dispatchTrackballEvent(MotionEvent	event)	Pass	a	trackball	motion	event	down	to	the	focused	view.	boolean	dispatchUnhandledMove(View	focused,	int	direction)	This	method	is	the	last	chance	for	the	focused	view
and	its	ancestors	to	respond	to	an	arrow	key.	void	dispatchVisibilityChanged(View	changedView,	int	visibility)	Dispatch	a	view	visibility	change	down	the	view	hierarchy.	void	dispatchWindowFocusChanged(boolean	hasFocus)	Called	when	the	window	containing	this	view	gains	or	loses	window	focus.	void
dispatchWindowInsetsAnimationEnd(WindowInsetsAnimation	animation)	Dispatches	WindowInsetsAnimation.Callback#onEnd(WindowInsetsAnimation)	when	Window	Insets	animation	ends.	void	dispatchWindowInsetsAnimationPrepare(WindowInsetsAnimation	animation)	Dispatches
WindowInsetsAnimation.Callback#onPrepare(WindowInsetsAnimation)	when	Window	Insets	animation	is	being	prepared.	WindowInsets	dispatchWindowInsetsAnimationProgress(WindowInsets	insets,	List	runningAnimations)	Dispatches	WindowInsetsAnimation.Callback#onProgress(WindowInsets,	List)	when	Window	Insets	animation	makes
progress.	WindowInsetsAnimation.Bounds	dispatchWindowInsetsAnimationStart(WindowInsetsAnimation	animation,	WindowInsetsAnimation.Bounds	bounds)	Dispatches	WindowInsetsAnimation.Callback#onStart(WindowInsetsAnimation,	Bounds)	when	Window	Insets	animation	is	started.	void	dispatchWindowSystemUiVisiblityChanged(int	visible)
This	method	is	deprecated.	SystemUiVisibility	flags	are	deprecated.	Use	WindowInsetsController	instead.	void	dispatchWindowVisibilityChanged(int	visibility)	Dispatch	a	window	visibility	change	down	the	view	hierarchy.	boolean	drawChild(Canvas	canvas,	View	child,	long	drawingTime)	Draw	one	child	of	this	View	Group.	void
drawableStateChanged()	This	function	is	called	whenever	the	state	of	the	view	changes	in	such	a	way	that	it	impacts	the	state	of	drawables	being	shown.	void	endViewTransition(View	view)	This	method	should	always	be	called	following	an	earlier	call	to	startViewTransition(android.view.View).	View	findFocus()	Find	the	view	in	the	hierarchy	rooted	at
this	view	that	currently	has	focus.	OnBackInvokedDispatcher	findOnBackInvokedDispatcherForChild(View	child,	View	requester)	Walk	up	the	View	hierarchy	to	find	the	nearest	OnBackInvokedDispatcher.	void	findViewsWithText(ArrayList	outViews,	CharSequence	text,	int	flags)	Finds	the	Views	that	contain	given	text.	View	focusSearch(View	focused,
int	direction)	Find	the	nearest	view	in	the	specified	direction	that	wants	to	take	focus.	void	focusableViewAvailable(View	v)	Tells	the	parent	that	a	new	focusable	view	has	become	available.	boolean	gatherTransparentRegion(Region	region)	This	is	used	by	the	ViewRoot	to	perform	an	optimization	when	the	view	hierarchy	contains	one	or	several
SurfaceView.	ViewGroup.LayoutParams	generateDefaultLayoutParams()	Returns	a	set	of	default	layout	parameters.	ViewGroup.LayoutParams	generateLayoutParams(AttributeSet	attrs)	Returns	a	new	set	of	layout	parameters	based	on	the	supplied	attributes	set.	ViewGroup.LayoutParams	generateLayoutParams(ViewGroup.LayoutParams	p)	Returns
a	safe	set	of	layout	parameters	based	on	the	supplied	layout	params.	CharSequence	getAccessibilityClassName()	Return	the	class	name	of	this	object	to	be	used	for	accessibility	purposes.	View	getChildAt(int	index)	Returns	the	view	at	the	specified	position	in	the	group.	int	getChildCount()	Returns	the	number	of	children	in	the	group.	int
getChildDrawingOrder(int	childCount,	int	drawingPosition)	Converts	drawing	order	position	to	container	position.	final	int	getChildDrawingOrder(int	drawingPosition)	Converts	drawing	order	position	to	container	position.	static	int	getChildMeasureSpec(int	spec,	int	padding,	int	childDimension)	Does	the	hard	part	of	measureChildren:	figuring	out
the	MeasureSpec	to	pass	to	a	particular	child.	boolean	getChildStaticTransformation(View	child,	Transformation	t)	Sets	t	to	be	the	static	transformation	of	the	child,	if	set,	returning	a	boolean	to	indicate	whether	a	static	transform	was	set.	boolean	getChildVisibleRect(View	child,	Rect	r,	Point	offset)	Compute	the	visible	part	of	a	rectangular	region
defined	in	terms	of	a	child	view's	coordinates.	boolean	getClipChildren()	Returns	whether	this	group's	children	are	clipped	to	their	bounds	before	drawing.	boolean	getClipToPadding()	Returns	whether	this	ViewGroup	will	clip	its	children	to	its	padding,	and	resize	(but	not	clip)	any	EdgeEffect	to	the	padded	region,	if	padding	is	present.	int
getDescendantFocusability()	Gets	the	descendant	focusability	of	this	view	group.	View	getFocusedChild()	Returns	the	focused	child	of	this	view,	if	any.	LayoutAnimationController	getLayoutAnimation()	Returns	the	layout	animation	controller	used	to	animate	the	group's	children.	Animation.AnimationListener	getLayoutAnimationListener()	Returns	the
animation	listener	to	which	layout	animation	events	are	sent.	int	getLayoutMode()	Returns	the	basis	of	alignment	during	layout	operations	on	this	ViewGroup:	either	LAYOUT_MODE_CLIP_BOUNDS	or	LAYOUT_MODE_OPTICAL_BOUNDS.	LayoutTransition	getLayoutTransition()	Gets	the	LayoutTransition	object	for	this	ViewGroup.	int
getNestedScrollAxes()	Return	the	current	axes	of	nested	scrolling	for	this	ViewGroup.	ViewGroupOverlay	getOverlay()	Returns	the	ViewGroupOverlay	for	this	view	group,	creating	it	if	it	does	not	yet	exist.	int	getPersistentDrawingCache()	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the
introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	View.setLayerType(int,
android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have
compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	boolean	getTouchscreenBlocksFocus()	Check	whether	this	ViewGroup	should	ignore	focus	requests	for	itself	and	its
children.	boolean	hasFocus()	Returns	true	if	this	view	has	or	contains	focus	boolean	hasTransientState()	Indicates	whether	the	view	is	currently	tracking	transient	state	that	the	app	should	not	need	to	concern	itself	with	saving	and	restoring,	but	that	the	framework	should	take	special	note	to	preserve	when	possible.	int	indexOfChild(View	child)
Returns	the	position	in	the	group	of	the	specified	child	view.	final	void	invalidateChild(View	child,	Rect	dirty)	This	method	is	deprecated.	Use	onDescendantInvalidated(android.view.View,	android.view.View)	instead	to	observe	updates	to	draw	state	in	descendants.	ViewParent	invalidateChildInParent(int[]	location,	Rect	dirty)	This	method	is
deprecated.	Use	onDescendantInvalidated(android.view.View,	android.view.View)	instead	to	observe	updates	to	draw	state	in	descendants.	boolean	isAlwaysDrawnWithCacheEnabled()	This	method	was	deprecated	in	API	level	23.	As	of	Build.VERSION_CODES.M,	this	property	is	ignored.	Child	views	may	no	longer	have	their	caching	behavior	disabled
by	parents.	boolean	isAnimationCacheEnabled()	This	method	was	deprecated	in	API	level	23.	As	of	Build.VERSION_CODES.M,	this	property	is	ignored.	Caching	behavior	of	children	may	be	controlled	through	View#setLayerType(int,	Paint).	boolean	isChildrenDrawingOrderEnabled()	Indicates	whether	the	ViewGroup	is	drawing	its	children	in	the
order	defined	by	getChildDrawingOrder(int,	int).	boolean	isChildrenDrawnWithCacheEnabled()	This	method	was	deprecated	in	API	level	23.	As	of	Build.VERSION_CODES.M,	this	property	is	ignored.	Child	views	may	no	longer	be	forced	to	cache	their	rendering	state	by	their	parents.	Use	View#setLayerType(int,	Paint)	on	individual	Views	instead.
boolean	isLayoutSuppressed()	Returns	whether	layout	calls	on	this	container	are	currently	being	suppressed,	due	to	an	earlier	call	to	suppressLayout(boolean).	boolean	isMotionEventSplittingEnabled()	Returns	true	if	MotionEvents	dispatched	to	this	ViewGroup	can	be	split	to	multiple	children.	boolean	isTransitionGroup()	Returns	true	if	this
ViewGroup	should	be	considered	as	a	single	entity	for	removal	when	executing	an	Activity	transition.	void	jumpDrawablesToCurrentState()	Call	Drawable.jumpToCurrentState()	on	all	Drawable	objects	associated	with	this	view.	final	void	layout(int	l,	int	t,	int	r,	int	b)	Assign	a	size	and	position	to	a	view	and	all	of	its	descendants	This	is	the	second
phase	of	the	layout	mechanism.	void	measureChild(View	child,	int	parentWidthMeasureSpec,	int	parentHeightMeasureSpec)	Ask	one	of	the	children	of	this	view	to	measure	itself,	taking	into	account	both	the	MeasureSpec	requirements	for	this	view	and	its	padding.	void	measureChildWithMargins(View	child,	int	parentWidthMeasureSpec,	int
widthUsed,	int	parentHeightMeasureSpec,	int	heightUsed)	Ask	one	of	the	children	of	this	view	to	measure	itself,	taking	into	account	both	the	MeasureSpec	requirements	for	this	view	and	its	padding	and	margins.	void	measureChildren(int	widthMeasureSpec,	int	heightMeasureSpec)	Ask	all	of	the	children	of	this	view	to	measure	themselves,	taking
into	account	both	the	MeasureSpec	requirements	for	this	view	and	its	padding.	void	notifySubtreeAccessibilityStateChanged(View	child,	View	source,	int	changeType)	Notifies	a	view	parent	that	the	accessibility	state	of	one	of	its	descendants	has	changed	and	that	the	structure	of	the	subtree	is	different.	final	void
offsetDescendantRectToMyCoords(View	descendant,	Rect	rect)	Offset	a	rectangle	that	is	in	a	descendant's	coordinate	space	into	our	coordinate	space.	final	void	offsetRectIntoDescendantCoords(View	descendant,	Rect	rect)	Offset	a	rectangle	that	is	in	our	coordinate	space	into	an	ancestor's	coordinate	space.	void	onAttachedToWindow()	This	is	called
when	the	view	is	attached	to	a	window.	int[]	onCreateDrawableState(int	extraSpace)	Generate	the	new	Drawable	state	for	this	view.	void	onDescendantInvalidated(View	child,	View	target)	The	target	View	has	been	invalidated,	or	has	had	a	drawing	property	changed	that	requires	the	hierarchy	to	re-render.	If	you	override	this	method	you	must	call
through	to	the	superclass	implementation.	void	onDetachedFromWindow()	This	is	called	when	the	view	is	detached	from	a	window.	boolean	onInterceptHoverEvent(MotionEvent	event)	Implement	this	method	to	intercept	hover	events	before	they	are	handled	by	child	views.	boolean	onInterceptTouchEvent(MotionEvent	ev)	Implement	this	method	to
intercept	all	touch	screen	motion	events.	abstract	void	onLayout(boolean	changed,	int	l,	int	t,	int	r,	int	b)	Called	from	layout	when	this	view	should	assign	a	size	and	position	to	each	of	its	children.	boolean	onNestedFling(View	target,	float	velocityX,	float	velocityY,	boolean	consumed)	Request	a	fling	from	a	nested	scroll.	boolean
onNestedPreFling(View	target,	float	velocityX,	float	velocityY)	React	to	a	nested	fling	before	the	target	view	consumes	it.	boolean	onNestedPrePerformAccessibilityAction(View	target,	int	action,	Bundle	args)	React	to	an	accessibility	action	delegated	by	a	target	descendant	view	before	the	target	processes	it.	Subclasses	should	always	call
super.onNestedPrePerformAccessibilityAction	void	onNestedPreScroll(View	target,	int	dx,	int	dy,	int[]	consumed)	React	to	a	nested	scroll	in	progress	before	the	target	view	consumes	a	portion	of	the	scroll.	void	onNestedScroll(View	target,	int	dxConsumed,	int	dyConsumed,	int	dxUnconsumed,	int	dyUnconsumed)	React	to	a	nested	scroll	in	progress.
void	onNestedScrollAccepted(View	child,	View	target,	int	axes)	React	to	the	successful	claiming	of	a	nested	scroll	operation.	boolean	onRequestFocusInDescendants(int	direction,	Rect	previouslyFocusedRect)	Look	for	a	descendant	to	call	View#requestFocus	on.	boolean	onRequestSendAccessibilityEvent(View	child,	AccessibilityEvent	event)	Called
when	a	child	has	requested	sending	an	AccessibilityEvent	and	gives	an	opportunity	to	its	parent	to	augment	the	event.	PointerIcon	onResolvePointerIcon(MotionEvent	event,	int	pointerIndex)	Returns	the	pointer	icon	for	the	motion	event,	or	null	if	it	doesn't	specify	the	icon.	boolean	onStartNestedScroll(View	child,	View	target,	int	nestedScrollAxes)
React	to	a	descendant	view	initiating	a	nestable	scroll	operation,	claiming	the	nested	scroll	operation	if	appropriate.	void	onStopNestedScroll(View	child)	React	to	a	nested	scroll	operation	ending.	void	onViewAdded(View	child)	Called	when	a	new	child	is	added	to	this	ViewGroup.	void	onViewRemoved(View	child)	Called	when	a	child	view	is	removed
from	this	ViewGroup.	void	recomputeViewAttributes(View	child)	Tell	view	hierarchy	that	the	global	view	attributes	need	to	be	re-evaluated.	void	removeAllViews()	Call	this	method	to	remove	all	child	views	from	the	ViewGroup.	void	removeAllViewsInLayout()	Called	by	a	ViewGroup	subclass	to	remove	child	views	from	itself,	when	it	must	first	know	its
size	on	screen	before	it	can	calculate	how	many	child	views	it	will	render.	void	removeDetachedView(View	child,	boolean	animate)	Finishes	the	removal	of	a	detached	view.	void	removeView(View	view)	Note:	do	not	invoke	this	method	from	View.draw(android.graphics.Canvas),	View.onDraw(android.graphics.Canvas),
dispatchDraw(android.graphics.Canvas)	or	any	related	method.	void	removeViewAt(int	index)	Removes	the	view	at	the	specified	position	in	the	group.	void	removeViewInLayout(View	view)	Removes	a	view	during	layout.	void	removeViews(int	start,	int	count)	Removes	the	specified	range	of	views	from	the	group.	void	removeViewsInLayout(int	start,
int	count)	Removes	a	range	of	views	during	layout.	void	requestChildFocus(View	child,	View	focused)	Called	when	a	child	of	this	parent	wants	focus	boolean	requestChildRectangleOnScreen(View	child,	Rect	rectangle,	boolean	immediate)	Called	when	a	child	of	this	group	wants	a	particular	rectangle	to	be	positioned	onto	the	screen.	void
requestDisallowInterceptTouchEvent(boolean	disallowIntercept)	Called	when	a	child	does	not	want	this	parent	and	its	ancestors	to	intercept	touch	events	with	ViewGroup#onInterceptTouchEvent(MotionEvent).	boolean	requestFocus(int	direction,	Rect	previouslyFocusedRect)	Call	this	to	try	to	give	focus	to	a	specific	view	or	to	one	of	its	descendants
and	give	it	hints	about	the	direction	and	a	specific	rectangle	that	the	focus	is	coming	from.	Looks	for	a	view	to	give	focus	to	respecting	the	setting	specified	by	getDescendantFocusability().	boolean	requestSendAccessibilityEvent(View	child,	AccessibilityEvent	event)	Called	by	a	child	to	request	from	its	parent	to	send	an	AccessibilityEvent.	void
requestTransparentRegion(View	child)	Called	when	a	child	wants	the	view	hierarchy	to	gather	and	report	transparent	regions	to	the	window	compositor.	boolean	restoreDefaultFocus()	Gives	focus	to	the	default-focus	view	in	the	view	hierarchy	that	has	this	view	as	a	root.	void	scheduleLayoutAnimation()	Schedules	the	layout	animation	to	be	played
after	the	next	layout	pass	of	this	view	group.	void	setAddStatesFromChildren(boolean	addsStates)	Sets	whether	this	ViewGroup's	drawable	states	also	include	its	children's	drawable	states.	void	setAlwaysDrawnWithCacheEnabled(boolean	always)	This	method	was	deprecated	in	API	level	23.	As	of	Build.VERSION_CODES.M,	this	property	is	ignored.
Child	views	may	no	longer	have	their	caching	behavior	disabled	by	parents.	void	setAnimationCacheEnabled(boolean	enabled)	This	method	was	deprecated	in	API	level	23.	As	of	Build.VERSION_CODES.M,	this	property	is	ignored.	Caching	behavior	of	children	may	be	controlled	through	View#setLayerType(int,	Paint).	void
setChildrenDrawingCacheEnabled(boolean	enabled)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due
to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	View.setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from
either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit
testing	the	PixelCopy	API	is	recommended.	void	setChildrenDrawingOrderEnabled(boolean	enabled)	Tells	the	ViewGroup	whether	to	draw	its	children	in	the	order	defined	by	the	method	getChildDrawingOrder(int,	int).	void	setChildrenDrawnWithCacheEnabled(boolean	enabled)	This	method	was	deprecated	in	API	level	23.	As	of
Build.VERSION_CODES.M,	this	property	is	ignored.	Child	views	may	no	longer	be	forced	to	cache	their	rendering	state	by	their	parents.	Use	View#setLayerType(int,	Paint)	on	individual	Views	instead.	void	setClipChildren(boolean	clipChildren)	By	default,	children	are	clipped	to	their	bounds	before	drawing.	void	setClipToPadding(boolean
clipToPadding)	Sets	whether	this	ViewGroup	will	clip	its	children	to	its	padding	and	resize	(but	not	clip)	any	EdgeEffect	to	the	padded	region,	if	padding	is	present.	void	setDescendantFocusability(int	focusability)	Set	the	descendant	focusability	of	this	view	group.	void	setLayoutAnimation(LayoutAnimationController	controller)	Sets	the	layout
animation	controller	used	to	animate	the	group's	children	after	the	first	layout.	void	setLayoutAnimationListener(Animation.AnimationListener	animationListener)	Specifies	the	animation	listener	to	which	layout	animation	events	must	be	sent.	void	setLayoutMode(int	layoutMode)	Sets	the	basis	of	alignment	during	the	layout	of	this	ViewGroup.	void
setLayoutTransition(LayoutTransition	transition)	Sets	the	LayoutTransition	object	for	this	ViewGroup.	void	setMotionEventSplittingEnabled(boolean	split)	Enable	or	disable	the	splitting	of	MotionEvents	to	multiple	children	during	touch	event	dispatch.	void	setOnHierarchyChangeListener(ViewGroup.OnHierarchyChangeListener	listener)	Register	a
callback	to	be	invoked	when	a	child	is	added	to	or	removed	from	this	view.	void	setPersistentDrawingCache(int	drawingCacheToKeep)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache
layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	View.setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of
the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	View.draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time
shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	setStaticTransformationsEnabled(boolean	enabled)	When	this	property	is	set	to	true,	this	ViewGroup	supports	static	transformations	on	children;	this	causes	getChildStaticTransformation(android.view.View,
android.view.animation.Transformation)	to	be	invoked	when	a	child	is	drawn.	void	setTouchscreenBlocksFocus(boolean	touchscreenBlocksFocus)	Set	whether	this	ViewGroup	should	ignore	focus	requests	for	itself	and	its	children.	void	setTransitionGroup(boolean	isTransitionGroup)	Changes	whether	or	not	this	ViewGroup	should	be	treated	as	a
single	entity	during	Activity	Transitions.	void	setWindowInsetsAnimationCallback(WindowInsetsAnimation.Callback	callback)	Sets	a	WindowInsetsAnimation.Callback	to	be	notified	about	animations	of	windows	that	cause	insets.	boolean	shouldDelayChildPressedState()	Return	true	if	the	pressed	state	should	be	delayed	for	children	or	descendants	of
this	ViewGroup.	boolean	showContextMenuForChild(View	originalView,	float	x,	float	y)	Shows	the	context	menu	for	the	specified	view	or	its	ancestors	anchored	to	the	specified	view-relative	coordinate.	boolean	showContextMenuForChild(View	originalView)	Shows	the	context	menu	for	the	specified	view	or	its	ancestors.	ActionMode
startActionModeForChild(View	originalView,	ActionMode.Callback	callback,	int	type)	Start	an	action	mode	of	a	specific	type	for	the	specified	view.	ActionMode	startActionModeForChild(View	originalView,	ActionMode.Callback	callback)	Start	an	action	mode	for	the	specified	view	with	the	default	type	ActionMode#TYPE_PRIMARY.	void
startLayoutAnimation()	Runs	the	layout	animation.	void	startViewTransition(View	view)	This	method	tells	the	ViewGroup	that	the	given	View	object,	which	should	have	this	ViewGroup	as	its	parent,	should	be	kept	around	(re-displayed	when	the	ViewGroup	draws	its	children)	even	if	it	is	removed	from	its	parent.	void	suppressLayout(boolean	suppress)
Tells	this	ViewGroup	to	suppress	all	layout()	calls	until	layout	suppression	is	disabled	with	a	later	call	to	suppressLayout(false).	void	updateViewLayout(View	view,	ViewGroup.LayoutParams	params)	From	class	android.view.View	void	addChildrenForAccessibility(ArrayList	outChildren)	Adds	the	children	of	this	View	relevant	for	accessibility	to	the
given	list	as	output.	void	addExtraDataToAccessibilityNodeInfo(AccessibilityNodeInfo	info,	String	extraDataKey,	Bundle	arguments)	Adds	extra	data	to	an	AccessibilityNodeInfo	based	on	an	explicit	request	for	the	additional	data.	void	addFocusables(ArrayList	views,	int	direction)	Add	any	focusable	views	that	are	descendants	of	this	view	(possibly
including	this	view	if	it	is	focusable	itself)	to	views.	void	addFocusables(ArrayList	views,	int	direction,	int	focusableMode)	Adds	any	focusable	views	that	are	descendants	of	this	view	(possibly	including	this	view	if	it	is	focusable	itself)	to	views.	void	addKeyboardNavigationClusters(Collection	views,	int	direction)	Adds	any	keyboard	navigation	cluster
roots	that	are	descendants	of	this	view	(possibly	including	this	view	if	it	is	a	cluster	root	itself)	to	views.	void	addOnAttachStateChangeListener(View.OnAttachStateChangeListener	listener)	Add	a	listener	for	attach	state	changes.	void	addOnLayoutChangeListener(View.OnLayoutChangeListener	listener)	Add	a	listener	that	will	be	called	when	the
bounds	of	the	view	change	due	to	layout	processing.	void	addOnUnhandledKeyEventListener(View.OnUnhandledKeyEventListener	listener)	Adds	a	listener	which	will	receive	unhandled	KeyEvents.	void	addTouchables(ArrayList	views)	Add	any	touchable	views	that	are	descendants	of	this	view	(possibly	including	this	view	if	it	is	touchable	itself)	to
views.	ViewPropertyAnimator	animate()	This	method	returns	a	ViewPropertyAnimator	object,	which	can	be	used	to	animate	specific	properties	on	this	View.	void	announceForAccessibility(CharSequence	text)	Convenience	method	for	sending	a	AccessibilityEvent#TYPE_ANNOUNCEMENT	AccessibilityEvent	to	suggest	that	an	accessibility	service
announce	the	specified	text	to	its	users.	void	autofill(AutofillValue	value)	Automatically	fills	the	content	of	this	view	with	the	value.	void	autofill(SparseArray	values)	Automatically	fills	the	content	of	the	virtual	children	within	this	view.	boolean	awakenScrollBars(int	startDelay,	boolean	invalidate)	Trigger	the	scrollbars	to	draw.	boolean
awakenScrollBars(int	startDelay)	Trigger	the	scrollbars	to	draw.	boolean	awakenScrollBars()	Trigger	the	scrollbars	to	draw.	void	bringToFront()	Change	the	view's	z	order	in	the	tree,	so	it's	on	top	of	other	sibling	views.	void	buildDrawingCache(boolean	autoScale)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made
obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,
setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are
discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	buildDrawingCache()	This	method	was	deprecated	in	API	level	28.	The	view	drawing
cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha
animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages
are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	buildLayer()	Forces	this	view's	layer	to	be	created	and	this	view	to	be	rendered	into
its	layer.	boolean	callOnClick()	Directly	call	any	attached	OnClickListener.	boolean	canResolveLayoutDirection()	Check	if	layout	direction	resolution	can	be	done.	boolean	canResolveTextAlignment()	Check	if	text	alignment	resolution	can	be	done.	boolean	canResolveTextDirection()	Check	if	text	direction	resolution	can	be	done.	boolean
canScrollHorizontally(int	direction)	Check	if	this	view	can	be	scrolled	horizontally	in	a	certain	direction.	boolean	canScrollVertically(int	direction)	Check	if	this	view	can	be	scrolled	vertically	in	a	certain	direction.	final	void	cancelDragAndDrop()	Cancels	an	ongoing	drag	and	drop	operation.	void	cancelLongPress()	Cancels	a	pending	long	press.	final
void	cancelPendingInputEvents()	Cancel	any	deferred	high-level	input	events	that	were	previously	posted	to	the	event	queue.	boolean	checkInputConnectionProxy(View	view)	Called	by	the	InputMethodManager	when	a	view	who	is	not	the	current	input	connection	target	is	trying	to	make	a	call	on	the	manager.	void	clearAnimation()	Cancels	any
animations	for	this	view.	void	clearFocus()	Called	when	this	view	wants	to	give	up	focus.	void	clearViewTranslationCallback()	Clear	the	ViewTranslationCallback	from	this	view.	static	int	combineMeasuredStates(int	curState,	int	newState)	Merge	two	states	as	returned	by	getMeasuredState().	int	computeHorizontalScrollExtent()	Compute	the
horizontal	extent	of	the	horizontal	scrollbar's	thumb	within	the	horizontal	range.	int	computeHorizontalScrollOffset()	Compute	the	horizontal	offset	of	the	horizontal	scrollbar's	thumb	within	the	horizontal	range.	int	computeHorizontalScrollRange()	Compute	the	horizontal	range	that	the	horizontal	scrollbar	represents.	void	computeScroll()	Called	by	a
parent	to	request	that	a	child	update	its	values	for	mScrollX	and	mScrollY	if	necessary.	WindowInsets	computeSystemWindowInsets(WindowInsets	in,	Rect	outLocalInsets)	Compute	insets	that	should	be	consumed	by	this	view	and	the	ones	that	should	propagate	to	those	under	it.	int	computeVerticalScrollExtent()	Compute	the	vertical	extent	of	the
vertical	scrollbar's	thumb	within	the	vertical	range.	int	computeVerticalScrollOffset()	Compute	the	vertical	offset	of	the	vertical	scrollbar's	thumb	within	the	horizontal	range.	int	computeVerticalScrollRange()	Compute	the	vertical	range	that	the	vertical	scrollbar	represents.	AccessibilityNodeInfo	createAccessibilityNodeInfo()	Returns	an
AccessibilityNodeInfo	representing	this	view	from	the	point	of	view	of	an	AccessibilityService.	void	createContextMenu(ContextMenu	menu)	Show	the	context	menu	for	this	view.	void	destroyDrawingCache()	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated
rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware
rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering
features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	WindowInsets	dispatchApplyWindowInsets(WindowInsets	insets)	Request	to	apply	the	given	window	insets	to	this	view	or	another	view	in	its	subtree.	boolean
dispatchCapturedPointerEvent(MotionEvent	event)	Pass	a	captured	pointer	event	down	to	the	focused	view.	void	dispatchConfigurationChanged(Configuration	newConfig)	Dispatch	a	notification	about	a	resource	configuration	change	down	the	view	hierarchy.	void	dispatchCreateViewTranslationRequest(Map	viewIds,	int[]	supportedFormats,
TranslationCapability	capability,	List	requests)	Dispatch	to	collect	the	ViewTranslationRequests	for	translation	purpose	by	traversing	the	hierarchy	when	the	app	requests	ui	translation.	void	dispatchDisplayHint(int	hint)	Dispatch	a	hint	about	whether	this	view	is	displayed.	boolean	dispatchDragEvent(DragEvent	event)	Detects	if	this	View	is	enabled
and	has	a	drag	event	listener.	void	dispatchDraw(Canvas	canvas)	Called	by	draw	to	draw	the	child	views.	void	dispatchDrawableHotspotChanged(float	x,	float	y)	Dispatches	drawableHotspotChanged	to	all	of	this	View's	children.	void	dispatchFinishTemporaryDetach()	Dispatch	onFinishTemporaryDetach()	to	this	View	and	its	direct	children	if	this	is	a
container	View.	boolean	dispatchGenericFocusedEvent(MotionEvent	event)	Dispatch	a	generic	motion	event	to	the	currently	focused	view.	boolean	dispatchGenericMotionEvent(MotionEvent	event)	Dispatch	a	generic	motion	event.	boolean	dispatchGenericPointerEvent(MotionEvent	event)	Dispatch	a	generic	motion	event	to	the	view	under	the	first
pointer.	boolean	dispatchHoverEvent(MotionEvent	event)	Dispatch	a	hover	event.	boolean	dispatchKeyEvent(KeyEvent	event)	Dispatch	a	key	event	to	the	next	view	on	the	focus	path.	boolean	dispatchKeyEventPreIme(KeyEvent	event)	Dispatch	a	key	event	before	it	is	processed	by	any	input	method	associated	with	the	view	hierarchy.	boolean
dispatchKeyShortcutEvent(KeyEvent	event)	Dispatches	a	key	shortcut	event.	boolean	dispatchNestedFling(float	velocityX,	float	velocityY,	boolean	consumed)	Dispatch	a	fling	to	a	nested	scrolling	parent.	boolean	dispatchNestedPreFling(float	velocityX,	float	velocityY)	Dispatch	a	fling	to	a	nested	scrolling	parent	before	it	is	processed	by	this	view.
boolean	dispatchNestedPrePerformAccessibilityAction(int	action,	Bundle	arguments)	Report	an	accessibility	action	to	this	view's	parents	for	delegated	processing.	boolean	dispatchNestedPreScroll(int	dx,	int	dy,	int[]	consumed,	int[]	offsetInWindow)	Dispatch	one	step	of	a	nested	scroll	in	progress	before	this	view	consumes	any	portion	of	it.	boolean
dispatchNestedScroll(int	dxConsumed,	int	dyConsumed,	int	dxUnconsumed,	int	dyUnconsumed,	int[]	offsetInWindow)	Dispatch	one	step	of	a	nested	scroll	in	progress.	void	dispatchPointerCaptureChanged(boolean	hasCapture)	boolean	dispatchPopulateAccessibilityEvent(AccessibilityEvent	event)	Dispatches	an	AccessibilityEvent	to	the	View	first	and
then	to	its	children	for	adding	their	text	content	to	the	event.	void	dispatchProvideAutofillStructure(ViewStructure	structure,	int	flags)	Dispatches	creation	of	a	ViewStructures	for	autofill	purposes	down	the	hierarchy,	when	an	Assist	structure	is	being	created	as	part	of	an	autofill	request.	void	dispatchProvideStructure(ViewStructure	structure)
Dispatch	creation	of	ViewStructure	down	the	hierarchy.	void	dispatchRestoreInstanceState(SparseArray	container)	Called	by	restoreHierarchyState(android.util.SparseArray)	to	retrieve	the	state	for	this	view	and	its	children.	void	dispatchSaveInstanceState(SparseArray	container)	Called	by	saveHierarchyState(android.util.SparseArray)	to	store	the
state	for	this	view	and	its	children.	void	dispatchScrollCaptureSearch(Rect	localVisibleRect,	Point	windowOffset,	Consumer	targets)	Dispatch	a	scroll	capture	search	request	down	the	view	hierarchy.	void	dispatchSetActivated(boolean	activated)	Dispatch	setActivated	to	all	of	this	View's	children.	void	dispatchSetPressed(boolean	pressed)	Dispatch
setPressed	to	all	of	this	View's	children.	void	dispatchSetSelected(boolean	selected)	Dispatch	setSelected	to	all	of	this	View's	children.	void	dispatchStartTemporaryDetach()	Dispatch	onStartTemporaryDetach()	to	this	View	and	its	direct	children	if	this	is	a	container	View.	void	dispatchSystemUiVisibilityChanged(int	visibility)	This	method	was
deprecated	in	API	level	30.	Use	WindowInsets#isVisible(int)	to	find	out	about	system	bar	visibilities	by	setting	a	OnApplyWindowInsetsListener	on	this	view.	boolean	dispatchTouchEvent(MotionEvent	event)	Pass	the	touch	screen	motion	event	down	to	the	target	view,	or	this	view	if	it	is	the	target.	boolean	dispatchTrackballEvent(MotionEvent	event)
Pass	a	trackball	motion	event	down	to	the	focused	view.	boolean	dispatchUnhandledMove(View	focused,	int	direction)	This	method	is	the	last	chance	for	the	focused	view	and	its	ancestors	to	respond	to	an	arrow	key.	void	dispatchVisibilityChanged(View	changedView,	int	visibility)	Dispatch	a	view	visibility	change	down	the	view	hierarchy.	void
dispatchWindowFocusChanged(boolean	hasFocus)	Called	when	the	window	containing	this	view	gains	or	loses	window	focus.	void	dispatchWindowInsetsAnimationEnd(WindowInsetsAnimation	animation)	Dispatches	WindowInsetsAnimation.Callback#onEnd(WindowInsetsAnimation)	when	Window	Insets	animation	ends.	void
dispatchWindowInsetsAnimationPrepare(WindowInsetsAnimation	animation)	Dispatches	WindowInsetsAnimation.Callback#onPrepare(WindowInsetsAnimation)	when	Window	Insets	animation	is	being	prepared.	WindowInsets	dispatchWindowInsetsAnimationProgress(WindowInsets	insets,	List	runningAnimations)	Dispatches
WindowInsetsAnimation.Callback#onProgress(WindowInsets,	List)	when	Window	Insets	animation	makes	progress.	WindowInsetsAnimation.Bounds	dispatchWindowInsetsAnimationStart(WindowInsetsAnimation	animation,	WindowInsetsAnimation.Bounds	bounds)	Dispatches	WindowInsetsAnimation.Callback#onStart(WindowInsetsAnimation,
Bounds)	when	Window	Insets	animation	is	started.	void	dispatchWindowSystemUiVisiblityChanged(int	visible)	This	method	was	deprecated	in	API	level	30.	SystemUiVisibility	flags	are	deprecated.	Use	WindowInsetsController	instead.	void	dispatchWindowVisibilityChanged(int	visibility)	Dispatch	a	window	visibility	change	down	the	view	hierarchy.
void	draw(Canvas	canvas)	Manually	render	this	view	(and	all	of	its	children)	to	the	given	Canvas.	void	drawableHotspotChanged(float	x,	float	y)	This	function	is	called	whenever	the	view	hotspot	changes	and	needs	to	be	propagated	to	drawables	or	child	views	managed	by	the	view.	void	drawableStateChanged()	This	function	is	called	whenever	the
state	of	the	view	changes	in	such	a	way	that	it	impacts	the	state	of	drawables	being	shown.	View	findFocus()	Find	the	view	in	the	hierarchy	rooted	at	this	view	that	currently	has	focus.	final	OnBackInvokedDispatcher	findOnBackInvokedDispatcher()	Walk	up	the	View	hierarchy	to	find	the	nearest	OnBackInvokedDispatcher.	final	T	findViewById(int	id)
Finds	the	first	descendant	view	with	the	given	ID,	the	view	itself	if	the	ID	matches	getId(),	or	null	if	the	ID	is	invalid	(<	0)	or	there	is	no	matching	view	in	the	hierarchy.	final	T	findViewWithTag(Object	tag)	Look	for	a	child	view	with	the	given	tag.	void	findViewsWithText(ArrayList	outViews,	CharSequence	searched,	int	flags)	Finds	the	Views	that
contain	given	text.	boolean	fitSystemWindows(Rect	insets)	This	method	was	deprecated	in	API	level	20.	As	of	API	20	use	dispatchApplyWindowInsets(android.view.WindowInsets)	to	apply	insets	to	views.	Views	should	override	onApplyWindowInsets(android.view.WindowInsets)	or	use
setOnApplyWindowInsetsListener(android.view.View.OnApplyWindowInsetsListener)	to	implement	handling	their	own	insets.	View	focusSearch(int	direction)	Find	the	nearest	view	in	the	specified	direction	that	can	take	focus.	void	forceHasOverlappingRendering(boolean	hasOverlappingRendering)	Sets	the	behavior	for	overlapping	rendering	for	this
view	(see	hasOverlappingRendering()	for	more	details	on	this	behavior).	void	forceLayout()	Forces	this	view	to	be	laid	out	during	the	next	layout	pass.	boolean	gatherTransparentRegion(Region	region)	This	is	used	by	the	ViewRoot	to	perform	an	optimization	when	the	view	hierarchy	contains	one	or	several	SurfaceView.	void
generateDisplayHash(String	hashAlgorithm,	Rect	bounds,	Executor	executor,	DisplayHashResultCallback	callback)	Called	to	generate	a	DisplayHash	for	this	view.	static	int	generateViewId()	Generate	a	value	suitable	for	use	in	setId(int).	CharSequence	getAccessibilityClassName()	Return	the	class	name	of	this	object	to	be	used	for	accessibility
purposes.	View.AccessibilityDelegate	getAccessibilityDelegate()	Returns	the	delegate	for	implementing	accessibility	support	via	composition.	int	getAccessibilityLiveRegion()	Gets	the	live	region	mode	for	this	View.	AccessibilityNodeProvider	getAccessibilityNodeProvider()	Gets	the	provider	for	managing	a	virtual	view	hierarchy	rooted	at	this	View
and	reported	to	AccessibilityServices	that	explore	the	window	content.	CharSequence	getAccessibilityPaneTitle()	Get	the	title	of	the	pane	for	purposes	of	accessibility.	int	getAccessibilityTraversalAfter()	Gets	the	id	of	a	view	after	which	this	one	is	visited	in	accessibility	traversal.	int	getAccessibilityTraversalBefore()	Gets	the	id	of	a	view	before	which



this	one	is	visited	in	accessibility	traversal.	float	getAlpha()	The	opacity	of	the	view.	Animation	getAnimation()	Get	the	animation	currently	associated	with	this	view.	Matrix	getAnimationMatrix()	Return	the	current	transformation	matrix	of	the	view.	IBinder	getApplicationWindowToken()	Retrieve	a	unique	token	identifying	the	top-level	"real"	window
of	the	window	that	this	view	is	attached	to.	int[]	getAttributeResolutionStack(int	attribute)	Returns	the	ordered	list	of	resource	ID	that	are	considered	when	resolving	attribute	values	for	this	View.	Map	getAttributeSourceResourceMap()	Returns	the	mapping	of	attribute	resource	ID	to	source	resource	ID	where	the	attribute	value	was	set.	String[]
getAutofillHints()	Gets	the	hints	that	help	an	AutofillService	determine	how	to	autofill	the	view	with	the	user's	data.	final	AutofillId	getAutofillId()	Gets	the	unique,	logical	identifier	of	this	view	in	the	activity,	for	autofill	purposes.	int	getAutofillType()	Describes	the	autofill	type	of	this	view,	so	an	AutofillService	can	create	the	proper	AutofillValue	when
autofilling	the	view.	AutofillValue	getAutofillValue()	Gets	the	View's	current	autofill	value.	Drawable	getBackground()	Gets	the	background	drawable	BlendMode	getBackgroundTintBlendMode()	Return	the	blending	mode	used	to	apply	the	tint	to	the	background	drawable,	if	specified.	ColorStateList	getBackgroundTintList()	Return	the	tint	applied	to
the	background	drawable,	if	specified.	PorterDuff.Mode	getBackgroundTintMode()	Return	the	blending	mode	used	to	apply	the	tint	to	the	background	drawable,	if	specified.	int	getBaseline()	Return	the	offset	of	the	widget's	text	baseline	from	the	widget's	top	boundary.	final	int	getBottom()	Bottom	position	of	this	view	relative	to	its	parent.	float
getBottomFadingEdgeStrength()	Returns	the	strength,	or	intensity,	of	the	bottom	faded	edge.	int	getBottomPaddingOffset()	Amount	by	which	to	extend	the	bottom	fading	region.	float	getCameraDistance()	Gets	the	distance	along	the	Z	axis	from	the	camera	to	this	view.	boolean	getClipBounds(Rect	outRect)	Populates	an	output	rectangle	with	the	clip
bounds	of	the	view,	returning	true	if	successful	or	false	if	the	view's	clip	bounds	are	null.	Rect	getClipBounds()	Returns	a	copy	of	the	current	clipBounds.	final	boolean	getClipToOutline()	Returns	whether	the	Outline	should	be	used	to	clip	the	contents	of	the	View.	final	ContentCaptureSession	getContentCaptureSession()	Gets	the	session	used	to	notify
content	capture	events.	CharSequence	getContentDescription()	Returns	the	View's	content	description.	final	Context	getContext()	Returns	the	context	the	view	is	running	in,	through	which	it	can	access	the	current	theme,	resources,	etc.	ContextMenu.ContextMenuInfo	getContextMenuInfo()	Views	should	implement	this	if	they	have	extra	information
to	associate	with	the	context	menu.	final	boolean	getDefaultFocusHighlightEnabled()	Returns	whether	this	View	should	use	a	default	focus	highlight	when	it	gets	focused	but	doesn't	have	R.attr.state_focused	defined	in	its	background.	static	int	getDefaultSize(int	size,	int	measureSpec)	Utility	to	return	a	default	size.	Display	getDisplay()	Gets	the
logical	display	to	which	the	view's	window	has	been	attached.	final	int[]	getDrawableState()	Return	an	array	of	resource	IDs	of	the	drawable	states	representing	the	current	state	of	the	view.	Bitmap	getDrawingCache()	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-
accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this
with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only
rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	Bitmap	getDrawingCache(boolean	autoScale)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the
introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,
android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have
compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	getDrawingCacheBackgroundColor()	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was
largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,
setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are
discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	int	getDrawingCacheQuality()	This	method	was	deprecated	in	API	level	28.	The	view	drawing
cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha
animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages
are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	getDrawingRect(Rect	outRect)	Return	the	visible	drawing	bounds	of	your	view.	long
getDrawingTime()	Return	the	time	at	which	the	drawing	of	the	view	hierarchy	started.	float	getElevation()	The	base	elevation	of	this	view	relative	to	its	parent,	in	pixels.	int	getExplicitStyle()	Returns	the	resource	ID	for	the	style	specified	using	style="..."	in	the	AttributeSet's	backing	XML	element	or	Resources#ID_NULL	otherwise	if	not	specified	or
otherwise	not	applicable.	boolean	getFilterTouchesWhenObscured()	Gets	whether	the	framework	should	discard	touches	when	the	view's	window	is	obscured	by	another	visible	window	at	the	touched	location.	boolean	getFitsSystemWindows()	Check	for	state	of	setFitsSystemWindows(boolean).	int	getFocusable()	Returns	the	focusable	setting	for	this
view.	ArrayList	getFocusables(int	direction)	Find	and	return	all	focusable	views	that	are	descendants	of	this	view,	possibly	including	this	view	if	it	is	focusable	itself.	void	getFocusedRect(Rect	r)	When	a	view	has	focus	and	the	user	navigates	away	from	it,	the	next	view	is	searched	for	starting	from	the	rectangle	filled	in	by	this	method.	Drawable
getForeground()	Returns	the	drawable	used	as	the	foreground	of	this	View.	int	getForegroundGravity()	Describes	how	the	foreground	is	positioned.	BlendMode	getForegroundTintBlendMode()	Return	the	blending	mode	used	to	apply	the	tint	to	the	foreground	drawable,	if	specified.	ColorStateList	getForegroundTintList()	Return	the	tint	applied	to	the
foreground	drawable,	if	specified.	PorterDuff.Mode	getForegroundTintMode()	Return	the	blending	mode	used	to	apply	the	tint	to	the	foreground	drawable,	if	specified.	final	boolean	getGlobalVisibleRect(Rect	r)	Sets	r	to	the	coordinates	of	the	non-clipped	area	of	this	view	in	the	coordinate	space	of	the	view's	root	view.	boolean
getGlobalVisibleRect(Rect	r,	Point	globalOffset)	Sets	r	to	the	coordinates	of	the	non-clipped	area	of	this	view	in	the	coordinate	space	of	the	view's	root	view.	Handler	getHandler()	final	boolean	getHasOverlappingRendering()	Returns	the	value	for	overlapping	rendering	that	is	used	internally.	final	int	getHeight()	Return	the	height	of	your	view.	void
getHitRect(Rect	outRect)	Hit	rectangle	in	parent's	coordinates	int	getHorizontalFadingEdgeLength()	Returns	the	size	of	the	horizontal	faded	edges	used	to	indicate	that	more	content	in	this	view	is	visible.	int	getHorizontalScrollbarHeight()	Returns	the	height	of	the	horizontal	scrollbar.	Drawable	getHorizontalScrollbarThumbDrawable()	Returns	the
currently	configured	Drawable	for	the	thumb	of	the	horizontal	scroll	bar	if	it	exists,	null	otherwise.	Drawable	getHorizontalScrollbarTrackDrawable()	Returns	the	currently	configured	Drawable	for	the	track	of	the	horizontal	scroll	bar	if	it	exists,	null	otherwise.	int	getId()	Returns	this	view's	identifier.	int	getImportantForAccessibility()	Gets	the	mode
for	determining	whether	this	View	is	important	for	accessibility.	int	getImportantForAutofill()	Gets	the	mode	for	determining	whether	this	view	is	important	for	autofill.	int	getImportantForContentCapture()	Gets	the	mode	for	determining	whether	this	view	is	important	for	content	capture.	boolean	getKeepScreenOn()	Returns	whether	the	screen
should	remain	on,	corresponding	to	the	current	value	of	KEEP_SCREEN_ON.	KeyEvent.DispatcherState	getKeyDispatcherState()	Return	the	global	KeyEvent.DispatcherState	for	this	view's	window.	int	getLabelFor()	Gets	the	id	of	a	view	for	which	this	view	serves	as	a	label	for	accessibility	purposes.	int	getLayerType()	Indicates	what	type	of	layer	is
currently	associated	with	this	view.	int	getLayoutDirection()	Returns	the	resolved	layout	direction	for	this	view.	ViewGroup.LayoutParams	getLayoutParams()	Get	the	LayoutParams	associated	with	this	view.	final	int	getLeft()	Left	position	of	this	view	relative	to	its	parent.	float	getLeftFadingEdgeStrength()	Returns	the	strength,	or	intensity,	of	the	left
faded	edge.	int	getLeftPaddingOffset()	Amount	by	which	to	extend	the	left	fading	region.	final	boolean	getLocalVisibleRect(Rect	r)	Sets	r	to	the	coordinates	of	the	non-clipped	area	of	this	view	relative	to	the	top	left	corner	of	the	view.	void	getLocationInSurface(int[]	location)	Gets	the	coordinates	of	this	view	in	the	coordinate	space	of	the	Surface	that
contains	the	view.	void	getLocationInWindow(int[]	outLocation)	Gets	the	coordinates	of	this	view	in	the	coordinate	space	of	the	window	that	contains	the	view,	irrespective	of	system	decorations.	void	getLocationOnScreen(int[]	outLocation)	Gets	the	coordinates	of	this	view	in	the	coordinate	space	of	the	device	screen,	irrespective	of	system
decorations	and	whether	the	system	is	in	multi-window	mode.	Matrix	getMatrix()	The	transform	matrix	of	this	view,	which	is	calculated	based	on	the	current	rotation,	scale,	and	pivot	properties.	final	int	getMeasuredHeight()	Like	getMeasuredHeightAndState(),	but	only	returns	the	raw	height	component	(that	is	the	result	is	masked	by
MEASURED_SIZE_MASK).	final	int	getMeasuredHeightAndState()	Return	the	full	height	measurement	information	for	this	view	as	computed	by	the	most	recent	call	to	measure(int,	int).	final	int	getMeasuredState()	Return	only	the	state	bits	of	getMeasuredWidthAndState()	and	getMeasuredHeightAndState(),	combined	into	one	integer.	final	int
getMeasuredWidth()	Like	getMeasuredWidthAndState(),	but	only	returns	the	raw	width	component	(that	is	the	result	is	masked	by	MEASURED_SIZE_MASK).	final	int	getMeasuredWidthAndState()	Return	the	full	width	measurement	information	for	this	view	as	computed	by	the	most	recent	call	to	measure(int,	int).	int	getMinimumHeight()	Returns
the	minimum	height	of	the	view.	int	getMinimumWidth()	Returns	the	minimum	width	of	the	view.	int	getNextClusterForwardId()	Gets	the	id	of	the	root	of	the	next	keyboard	navigation	cluster.	int	getNextFocusDownId()	Gets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_DOWN.	int	getNextFocusForwardId()	Gets	the	id	of	the	view	to	use
when	the	next	focus	is	FOCUS_FORWARD.	int	getNextFocusLeftId()	Gets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_LEFT.	int	getNextFocusRightId()	Gets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_RIGHT.	int	getNextFocusUpId()	Gets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_UP.	View.OnFocusChangeListener
getOnFocusChangeListener()	Returns	the	focus-change	callback	registered	for	this	view.	int	getOutlineAmbientShadowColor()	ViewOutlineProvider	getOutlineProvider()	Returns	the	current	ViewOutlineProvider	of	the	view,	which	generates	the	Outline	that	defines	the	shape	of	the	shadow	it	casts,	and	enables	outline	clipping.	int
getOutlineSpotShadowColor()	int	getOverScrollMode()	Returns	the	over-scroll	mode	for	this	view.	ViewOverlay	getOverlay()	Returns	the	overlay	for	this	view,	creating	it	if	it	does	not	yet	exist.	int	getPaddingBottom()	Returns	the	bottom	padding	of	this	view.	int	getPaddingEnd()	Returns	the	end	padding	of	this	view	depending	on	its	resolved	layout
direction.	int	getPaddingLeft()	Returns	the	left	padding	of	this	view.	int	getPaddingRight()	Returns	the	right	padding	of	this	view.	int	getPaddingStart()	Returns	the	start	padding	of	this	view	depending	on	its	resolved	layout	direction.	int	getPaddingTop()	Returns	the	top	padding	of	this	view.	final	ViewParent	getParent()	Gets	the	parent	of	this	view.
ViewParent	getParentForAccessibility()	Gets	the	parent	for	accessibility	purposes.	float	getPivotX()	The	x	location	of	the	point	around	which	the	view	is	rotated	and	scaled.	float	getPivotY()	The	y	location	of	the	point	around	which	the	view	is	rotated	and	scaled.	PointerIcon	getPointerIcon()	Gets	the	pointer	icon	for	the	current	view.	final	List
getPreferKeepClearRects()	String[]	getReceiveContentMimeTypes()	Returns	the	MIME	types	accepted	by	performReceiveContent(ContentInfo)	for	this	view,	as	configured	via	setOnReceiveContentListener(String[],	OnReceiveContentListener).	Resources	getResources()	Returns	the	resources	associated	with	this	view.	final	boolean
getRevealOnFocusHint()	Returns	this	view's	preference	for	reveal	behavior	when	it	gains	focus.	final	int	getRight()	Right	position	of	this	view	relative	to	its	parent.	float	getRightFadingEdgeStrength()	Returns	the	strength,	or	intensity,	of	the	right	faded	edge.	int	getRightPaddingOffset()	Amount	by	which	to	extend	the	right	fading	region.
AttachedSurfaceControl	getRootSurfaceControl()	The	AttachedSurfaceControl	itself	is	not	a	View,	it	is	just	the	interface	to	the	windowing-system	object	that	contains	the	entire	view	hierarchy.	View	getRootView()	Finds	the	topmost	view	in	the	current	view	hierarchy.	WindowInsets	getRootWindowInsets()	Provide	original	WindowInsets	that	are
dispatched	to	the	view	hierarchy.	float	getRotation()	The	degrees	that	the	view	is	rotated	around	the	pivot	point.	float	getRotationX()	The	degrees	that	the	view	is	rotated	around	the	horizontal	axis	through	the	pivot	point.	float	getRotationY()	The	degrees	that	the	view	is	rotated	around	the	vertical	axis	through	the	pivot	point.	float	getScaleX()	The
amount	that	the	view	is	scaled	in	x	around	the	pivot	point,	as	a	proportion	of	the	view's	unscaled	width.	float	getScaleY()	The	amount	that	the	view	is	scaled	in	y	around	the	pivot	point,	as	a	proportion	of	the	view's	unscaled	height.	int	getScrollBarDefaultDelayBeforeFade()	Returns	the	delay	before	scrollbars	fade.	int	getScrollBarFadeDuration()
Returns	the	scrollbar	fade	duration.	int	getScrollBarSize()	Returns	the	scrollbar	size.	int	getScrollBarStyle()	Returns	the	current	scrollbar	style.	int	getScrollCaptureHint()	Returns	the	current	scroll	capture	hint	for	this	view.	int	getScrollIndicators()	Returns	a	bitmask	representing	the	enabled	scroll	indicators.	final	int	getScrollX()	Return	the	scrolled
left	position	of	this	view.	final	int	getScrollY()	Return	the	scrolled	top	position	of	this	view.	int	getSolidColor()	Override	this	if	your	view	is	known	to	always	be	drawn	on	top	of	a	solid	color	background,	and	needs	to	draw	fading	edges.	int	getSourceLayoutResId()	A	View	can	be	inflated	from	an	XML	layout.	final	CharSequence	getStateDescription()
Returns	the	View's	state	description.	StateListAnimator	getStateListAnimator()	Returns	the	current	StateListAnimator	if	exists.	int	getSuggestedMinimumHeight()	Returns	the	suggested	minimum	height	that	the	view	should	use.	int	getSuggestedMinimumWidth()	Returns	the	suggested	minimum	width	that	the	view	should	use.	List
getSystemGestureExclusionRects()	Retrieve	the	list	of	areas	within	this	view's	post-layout	coordinate	space	where	the	system	should	not	intercept	touch	or	other	pointing	device	gestures.	int	getSystemUiVisibility()	This	method	was	deprecated	in	API	level	30.	SystemUiVisibility	flags	are	deprecated.	Use	WindowInsetsController	instead.	Object
getTag()	Returns	this	view's	tag.	Object	getTag(int	key)	Returns	the	tag	associated	with	this	view	and	the	specified	key.	int	getTextAlignment()	Return	the	resolved	text	alignment.	int	getTextDirection()	Return	the	resolved	text	direction.	CharSequence	getTooltipText()	Returns	the	view's	tooltip	text.	final	int	getTop()	Top	position	of	this	view	relative
to	its	parent.	float	getTopFadingEdgeStrength()	Returns	the	strength,	or	intensity,	of	the	top	faded	edge.	int	getTopPaddingOffset()	Amount	by	which	to	extend	the	top	fading	region.	TouchDelegate	getTouchDelegate()	Gets	the	TouchDelegate	for	this	View.	ArrayList	getTouchables()	Find	and	return	all	touchable	views	that	are	descendants	of	this
view,	possibly	including	this	view	if	it	is	touchable	itself.	float	getTransitionAlpha()	This	property	is	intended	only	for	use	by	the	Fade	transition,	which	animates	it	to	produce	a	visual	translucency	that	does	not	side-effect	(or	get	affected	by)	the	real	alpha	property.	String	getTransitionName()	Returns	the	name	of	the	View	to	be	used	to	identify	Views
in	Transitions.	float	getTranslationX()	The	horizontal	location	of	this	view	relative	to	its	left	position.	float	getTranslationY()	The	vertical	location	of	this	view	relative	to	its	top	position.	float	getTranslationZ()	The	depth	location	of	this	view	relative	to	its	elevation.	long	getUniqueDrawingId()	Get	the	identifier	used	for	this	view	by	the	drawing	system.
int	getVerticalFadingEdgeLength()	Returns	the	size	of	the	vertical	faded	edges	used	to	indicate	that	more	content	in	this	view	is	visible.	int	getVerticalScrollbarPosition()	Drawable	getVerticalScrollbarThumbDrawable()	Returns	the	currently	configured	Drawable	for	the	thumb	of	the	vertical	scroll	bar	if	it	exists,	null	otherwise.	Drawable
getVerticalScrollbarTrackDrawable()	Returns	the	currently	configured	Drawable	for	the	track	of	the	vertical	scroll	bar	if	it	exists,	null	otherwise.	int	getVerticalScrollbarWidth()	Returns	the	width	of	the	vertical	scrollbar.	ViewTranslationResponse	getViewTranslationResponse()	Returns	the	ViewTranslationResponse	associated	with	this	view.
ViewTreeObserver	getViewTreeObserver()	Returns	the	ViewTreeObserver	for	this	view's	hierarchy.	int	getVisibility()	Returns	the	visibility	status	for	this	view.	final	int	getWidth()	Return	the	width	of	your	view.	int	getWindowAttachCount()	WindowId	getWindowId()	Retrieve	the	WindowId	for	the	window	this	view	is	currently	attached	to.
WindowInsetsController	getWindowInsetsController()	Retrieves	the	single	WindowInsetsController	of	the	window	this	view	is	attached	to.	int	getWindowSystemUiVisibility()	This	method	was	deprecated	in	API	level	30.	SystemUiVisibility	flags	are	deprecated.	Use	WindowInsetsController	instead.	IBinder	getWindowToken()	Retrieve	a	unique	token
identifying	the	window	this	view	is	attached	to.	int	getWindowVisibility()	Returns	the	current	visibility	of	the	window	this	view	is	attached	to	(either	GONE,	INVISIBLE,	or	VISIBLE).	void	getWindowVisibleDisplayFrame(Rect	outRect)	Retrieve	the	overall	visible	display	size	in	which	the	window	this	view	is	attached	to	has	been	positioned	in.	float	getX()
The	visual	x	position	of	this	view,	in	pixels.	float	getY()	The	visual	y	position	of	this	view,	in	pixels.	float	getZ()	The	visual	z	position	of	this	view,	in	pixels.	boolean	hasExplicitFocusable()	Returns	true	if	this	view	is	focusable	or	if	it	contains	a	reachable	View	for	which	hasExplicitFocusable()	returns	true.	boolean	hasFocus()	Returns	true	if	this	view	has
focus	itself,	or	is	the	ancestor	of	the	view	that	has	focus.	boolean	hasFocusable()	Returns	true	if	this	view	is	focusable	or	if	it	contains	a	reachable	View	for	which	hasFocusable()	returns	true.	boolean	hasNestedScrollingParent()	Returns	true	if	this	view	has	a	nested	scrolling	parent.	boolean	hasOnClickListeners()	Return	whether	this	view	has	an
attached	OnClickListener.	boolean	hasOnLongClickListeners()	Return	whether	this	view	has	an	attached	OnLongClickListener.	boolean	hasOverlappingRendering()	Returns	whether	this	View	has	content	which	overlaps.	boolean	hasPointerCapture()	Checks	pointer	capture	status.	boolean	hasTransientState()	Indicates	whether	the	view	is	currently
tracking	transient	state	that	the	app	should	not	need	to	concern	itself	with	saving	and	restoring,	but	that	the	framework	should	take	special	note	to	preserve	when	possible.	boolean	hasWindowFocus()	Returns	true	if	this	view	is	in	a	window	that	currently	has	window	focus.	static	View	inflate(Context	context,	int	resource,	ViewGroup	root)	Inflate	a
view	from	an	XML	resource.	void	invalidate()	Invalidate	the	whole	view.	void	invalidate(Rect	dirty)	This	method	was	deprecated	in	API	level	28.	The	switch	to	hardware	accelerated	rendering	in	API	14	reduced	the	importance	of	the	dirty	rectangle.	In	API	21	the	given	rectangle	is	ignored	entirely	in	favor	of	an	internally-calculated	area	instead.
Because	of	this,	clients	are	encouraged	to	just	call	invalidate().	void	invalidate(int	l,	int	t,	int	r,	int	b)	This	method	was	deprecated	in	API	level	28.	The	switch	to	hardware	accelerated	rendering	in	API	14	reduced	the	importance	of	the	dirty	rectangle.	In	API	21	the	given	rectangle	is	ignored	entirely	in	favor	of	an	internally-calculated	area	instead.
Because	of	this,	clients	are	encouraged	to	just	call	invalidate().	void	invalidateDrawable(Drawable	drawable)	Invalidates	the	specified	Drawable.	void	invalidateOutline()	Called	to	rebuild	this	View's	Outline	from	its	outline	provider	boolean	isAccessibilityFocused()	Returns	whether	this	View	is	accessibility	focused.	boolean	isAccessibilityHeading()
Gets	whether	this	view	is	a	heading	for	accessibility	purposes.	boolean	isActivated()	Indicates	the	activation	state	of	this	view.	boolean	isAttachedToWindow()	Returns	true	if	this	view	is	currently	attached	to	a	window.	boolean	isAutoHandwritingEnabled()	Return	whether	the	View	allows	automatic	handwriting	initiation.	boolean	isClickable()	Indicates
whether	this	view	reacts	to	click	events	or	not.	boolean	isContextClickable()	Indicates	whether	this	view	reacts	to	context	clicks	or	not.	boolean	isDirty()	True	if	this	view	has	changed	since	the	last	time	being	drawn.	boolean	isDrawingCacheEnabled()	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with
the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,
android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have
compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	boolean	isDuplicateParentStateEnabled()	Indicates	whether	this	duplicates	its	drawable	state	from	its	parent.
boolean	isEnabled()	Returns	the	enabled	status	for	this	view.	final	boolean	isFocusable()	Returns	whether	this	View	is	currently	able	to	take	focus.	final	boolean	isFocusableInTouchMode()	When	a	view	is	focusable,	it	may	not	want	to	take	focus	when	in	touch	mode.	boolean	isFocused()	Returns	true	if	this	view	has	focus	final	boolean
isFocusedByDefault()	Returns	whether	this	View	should	receive	focus	when	the	focus	is	restored	for	the	view	hierarchy	containing	this	view.	boolean	isForceDarkAllowed()	See	setForceDarkAllowed(boolean)	boolean	isHapticFeedbackEnabled()	boolean	isHardwareAccelerated()	Indicates	whether	this	view	is	attached	to	a	hardware	accelerated
window	or	not.	boolean	isHorizontalFadingEdgeEnabled()	Indicate	whether	the	horizontal	edges	are	faded	when	the	view	is	scrolled	horizontally.	boolean	isHorizontalScrollBarEnabled()	Indicate	whether	the	horizontal	scrollbar	should	be	drawn	or	not.	boolean	isHovered()	Returns	true	if	the	view	is	currently	hovered.	boolean
isImportantForAccessibility()	Computes	whether	this	view	should	be	exposed	for	accessibility.	final	boolean	isImportantForAutofill()	Hints	the	Android	System	whether	the	AssistStructure.ViewNode	associated	with	this	view	is	considered	important	for	autofill	purposes.	final	boolean	isImportantForContentCapture()	Hints	the	Android	System	whether
this	view	is	considered	important	for	content	capture,	based	on	the	value	explicitly	set	by	setImportantForContentCapture(int)	and	heuristics	when	it's	IMPORTANT_FOR_CONTENT_CAPTURE_AUTO.	boolean	isInEditMode()	Indicates	whether	this	View	is	currently	in	edit	mode.	boolean	isInLayout()	Returns	whether	the	view	hierarchy	is	currently
undergoing	a	layout	pass.	boolean	isInTouchMode()	Returns	whether	the	device	is	currently	in	touch	mode.	final	boolean	isKeyboardNavigationCluster()	Returns	whether	this	View	is	a	root	of	a	keyboard	navigation	cluster.	boolean	isLaidOut()	Returns	true	if	this	view	has	been	through	at	least	one	layout	since	it	was	last	attached	to	or	detached	from	a
window.	boolean	isLayoutDirectionResolved()	boolean	isLayoutRequested()	Indicates	whether	or	not	this	view's	layout	will	be	requested	during	the	next	hierarchy	layout	pass.	boolean	isLongClickable()	Indicates	whether	this	view	reacts	to	long	click	events	or	not.	boolean	isNestedScrollingEnabled()	Returns	true	if	nested	scrolling	is	enabled	for	this
view.	boolean	isOpaque()	Indicates	whether	this	View	is	opaque.	boolean	isPaddingOffsetRequired()	If	the	View	draws	content	inside	its	padding	and	enables	fading	edges,	it	needs	to	support	padding	offsets.	boolean	isPaddingRelative()	Return	if	the	padding	has	been	set	through	relative	values	setPaddingRelative(int,	int,	int,	int)	or	through	boolean
isPivotSet()	Returns	whether	or	not	a	pivot	has	been	set	by	a	call	to	setPivotX(float)	or	setPivotY(float).	final	boolean	isPreferKeepClear()	Retrieve	the	preference	for	this	view	to	be	kept	clear.	boolean	isPressed()	Indicates	whether	the	view	is	currently	in	pressed	state.	boolean	isSaveEnabled()	Indicates	whether	this	view	will	save	its	state	(that	is,
whether	its	onSaveInstanceState()	method	will	be	called).	boolean	isSaveFromParentEnabled()	Indicates	whether	the	entire	hierarchy	under	this	view	will	save	its	state	when	a	state	saving	traversal	occurs	from	its	parent.	boolean	isScreenReaderFocusable()	Returns	whether	the	view	should	be	treated	as	a	focusable	unit	by	screen	reader	accessibility
tools.	boolean	isScrollContainer()	Indicates	whether	this	view	is	one	of	the	set	of	scrollable	containers	in	its	window.	boolean	isScrollbarFadingEnabled()	Returns	true	if	scrollbars	will	fade	when	this	view	is	not	scrolling	boolean	isSelected()	Indicates	the	selection	state	of	this	view.	final	boolean	isShowingLayoutBounds()	Returns	true	when	the	View	is
attached	and	the	system	developer	setting	to	show	the	layout	bounds	is	enabled	or	false	otherwise.	boolean	isShown()	Returns	the	visibility	of	this	view	and	all	of	its	ancestors	boolean	isSoundEffectsEnabled()	final	boolean	isTemporarilyDetached()	Tells	whether	the	View	is	in	the	state	between	onStartTemporaryDetach()	and
onFinishTemporaryDetach().	boolean	isTextAlignmentResolved()	boolean	isTextDirectionResolved()	boolean	isVerticalFadingEdgeEnabled()	Indicate	whether	the	vertical	edges	are	faded	when	the	view	is	scrolled	horizontally.	boolean	isVerticalScrollBarEnabled()	Indicate	whether	the	vertical	scrollbar	should	be	drawn	or	not.	boolean
isVisibleToUserForAutofill(int	virtualId)	Computes	whether	this	virtual	autofill	view	is	visible	to	the	user.	void	jumpDrawablesToCurrentState()	Call	Drawable.jumpToCurrentState()	on	all	Drawable	objects	associated	with	this	view.	View	keyboardNavigationClusterSearch(View	currentCluster,	int	direction)	Find	the	nearest	keyboard	navigation	cluster
in	the	specified	direction.	void	layout(int	l,	int	t,	int	r,	int	b)	Assign	a	size	and	position	to	a	view	and	all	of	its	descendants	This	is	the	second	phase	of	the	layout	mechanism.	final	void	measure(int	widthMeasureSpec,	int	heightMeasureSpec)	This	is	called	to	find	out	how	big	a	view	should	be.	static	int[]	mergeDrawableStates(int[]	baseState,	int[]
additionalState)	Merge	your	own	state	values	in	additionalState	into	the	base	state	values	baseState	that	were	returned	by	onCreateDrawableState(int).	void	offsetLeftAndRight(int	offset)	Offset	this	view's	horizontal	location	by	the	specified	amount	of	pixels.	void	offsetTopAndBottom(int	offset)	Offset	this	view's	vertical	location	by	the	specified
number	of	pixels.	void	onAnimationEnd()	Invoked	by	a	parent	ViewGroup	to	notify	the	end	of	the	animation	currently	associated	with	this	view.	void	onAnimationStart()	Invoked	by	a	parent	ViewGroup	to	notify	the	start	of	the	animation	currently	associated	with	this	view.	WindowInsets	onApplyWindowInsets(WindowInsets	insets)	Called	when	the	view
should	apply	WindowInsets	according	to	its	internal	policy.	void	onAttachedToWindow()	This	is	called	when	the	view	is	attached	to	a	window.	void	onCancelPendingInputEvents()	Called	as	the	result	of	a	call	to	cancelPendingInputEvents()	on	this	view	or	a	parent	view.	boolean	onCapturedPointerEvent(MotionEvent	event)	Implement	this	method	to
handle	captured	pointer	events	boolean	onCheckIsTextEditor()	Check	whether	the	called	view	is	a	text	editor,	in	which	case	it	would	make	sense	to	automatically	display	a	soft	input	window	for	it.	void	onConfigurationChanged(Configuration	newConfig)	Called	when	the	current	configuration	of	the	resources	being	used	by	the	application	have
changed.	void	onCreateContextMenu(ContextMenu	menu)	Views	should	implement	this	if	the	view	itself	is	going	to	add	items	to	the	context	menu.	int[]	onCreateDrawableState(int	extraSpace)	Generate	the	new	Drawable	state	for	this	view.	InputConnection	onCreateInputConnection(EditorInfo	outAttrs)	Create	a	new	InputConnection	for	an
InputMethod	to	interact	with	the	view.	void	onCreateViewTranslationRequest(int[]	supportedFormats,	Consumer	requestsCollector)	Collects	a	ViewTranslationRequest	which	represents	the	content	to	be	translated	in	the	view.	void	onCreateVirtualViewTranslationRequests(long[]	virtualIds,	int[]	supportedFormats,	Consumer	requestsCollector)
Collects	ViewTranslationRequests	which	represents	the	content	to	be	translated	for	the	virtual	views	in	the	host	view.	void	onDetachedFromWindow()	This	is	called	when	the	view	is	detached	from	a	window.	void	onDisplayHint(int	hint)	Gives	this	view	a	hint	about	whether	is	displayed	or	not.	boolean	onDragEvent(DragEvent	event)	Handles	drag
events	sent	by	the	system	following	a	call	to	startDragAndDrop().	void	onDraw(Canvas	canvas)	Implement	this	to	do	your	drawing.	void	onDrawForeground(Canvas	canvas)	Draw	any	foreground	content	for	this	view.	final	void	onDrawScrollBars(Canvas	canvas)	Request	the	drawing	of	the	horizontal	and	the	vertical	scrollbar.	boolean
onFilterTouchEventForSecurity(MotionEvent	event)	Filter	the	touch	event	to	apply	security	policies.	void	onFinishInflate()	Finalize	inflating	a	view	from	XML.	void	onFinishTemporaryDetach()	Called	after	onStartTemporaryDetach()	when	the	container	is	done	changing	the	view.	void	onFocusChanged(boolean	gainFocus,	int	direction,	Rect
previouslyFocusedRect)	Called	by	the	view	system	when	the	focus	state	of	this	view	changes.	boolean	onGenericMotionEvent(MotionEvent	event)	Implement	this	method	to	handle	generic	motion	events.	void	onHoverChanged(boolean	hovered)	Implement	this	method	to	handle	hover	state	changes.	boolean	onHoverEvent(MotionEvent	event)
Implement	this	method	to	handle	hover	events.	void	onInitializeAccessibilityEvent(AccessibilityEvent	event)	Initializes	an	AccessibilityEvent	with	information	about	this	View	which	is	the	event	source.	void	onInitializeAccessibilityNodeInfo(AccessibilityNodeInfo	info)	Initializes	an	AccessibilityNodeInfo	with	information	about	this	view.	boolean
onKeyDown(int	keyCode,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyDown():	perform	press	of	the	view	when	KeyEvent#KEYCODE_DPAD_CENTER	or	KeyEvent#KEYCODE_ENTER	is	released,	if	the	view	is	enabled	and	clickable.	boolean	onKeyLongPress(int	keyCode,	KeyEvent	event)	Default	implementation	of
KeyEvent.Callback.onKeyLongPress():	always	returns	false	(doesn't	handle	the	event).	boolean	onKeyMultiple(int	keyCode,	int	repeatCount,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyMultiple():	always	returns	false	(doesn't	handle	the	event).	boolean	onKeyPreIme(int	keyCode,	KeyEvent	event)	Handle	a	key	event	before	it	is
processed	by	any	input	method	associated	with	the	view	hierarchy.	boolean	onKeyShortcut(int	keyCode,	KeyEvent	event)	Called	on	the	focused	view	when	a	key	shortcut	event	is	not	handled.	boolean	onKeyUp(int	keyCode,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyUp():	perform	clicking	of	the	view	when
KeyEvent#KEYCODE_DPAD_CENTER,	KeyEvent#KEYCODE_ENTER	or	KeyEvent#KEYCODE_SPACE	is	released.	void	onLayout(boolean	changed,	int	left,	int	top,	int	right,	int	bottom)	Called	from	layout	when	this	view	should	assign	a	size	and	position	to	each	of	its	children.	void	onMeasure(int	widthMeasureSpec,	int	heightMeasureSpec)	Measure
the	view	and	its	content	to	determine	the	measured	width	and	the	measured	height.	void	onOverScrolled(int	scrollX,	int	scrollY,	boolean	clampedX,	boolean	clampedY)	Called	by	overScrollBy(int,	int,	int,	int,	int,	int,	int,	int,	boolean)	to	respond	to	the	results	of	an	over-scroll	operation.	void	onPointerCaptureChange(boolean	hasCapture)	Called	when
the	window	has	just	acquired	or	lost	pointer	capture.	void	onPopulateAccessibilityEvent(AccessibilityEvent	event)	Called	from	dispatchPopulateAccessibilityEvent(android.view.accessibility.AccessibilityEvent)	giving	a	chance	to	this	View	to	populate	the	accessibility	event	with	its	text	content.	void	onProvideAutofillStructure(ViewStructure	structure,
int	flags)	Populates	a	ViewStructure	to	fullfil	an	autofill	request.	void	onProvideAutofillVirtualStructure(ViewStructure	structure,	int	flags)	Populates	a	ViewStructure	containing	virtual	children	to	fullfil	an	autofill	request.	void	onProvideContentCaptureStructure(ViewStructure	structure,	int	flags)	Populates	a	ViewStructure	for	content	capture.	void
onProvideStructure(ViewStructure	structure)	Called	when	assist	structure	is	being	retrieved	from	a	view	as	part	of	Activity.onProvideAssistData.	void	onProvideVirtualStructure(ViewStructure	structure)	Called	when	assist	structure	is	being	retrieved	from	a	view	as	part	of	Activity.onProvideAssistData	to	generate	additional	virtual	structure	under
this	view.	ContentInfo	onReceiveContent(ContentInfo	payload)	Implements	the	default	behavior	for	receiving	content	for	this	type	of	view.	PointerIcon	onResolvePointerIcon(MotionEvent	event,	int	pointerIndex)	Returns	the	pointer	icon	for	the	motion	event,	or	null	if	it	doesn't	specify	the	icon.	void	onRestoreInstanceState(Parcelable	state)	Hook
allowing	a	view	to	re-apply	a	representation	of	its	internal	state	that	had	previously	been	generated	by	onSaveInstanceState().	void	onRtlPropertiesChanged(int	layoutDirection)	Called	when	any	RTL	property	(layout	direction	or	text	direction	or	text	alignment)	has	been	changed.	Parcelable	onSaveInstanceState()	Hook	allowing	a	view	to	generate	a
representation	of	its	internal	state	that	can	later	be	used	to	create	a	new	instance	with	that	same	state.	void	onScreenStateChanged(int	screenState)	This	method	is	called	whenever	the	state	of	the	screen	this	view	is	attached	to	changes.	void	onScrollCaptureSearch(Rect	localVisibleRect,	Point	windowOffset,	Consumer	targets)	Called	when	scroll
capture	is	requested,	to	search	for	appropriate	content	to	scroll.	void	onScrollChanged(int	l,	int	t,	int	oldl,	int	oldt)	This	is	called	in	response	to	an	internal	scroll	in	this	view	(i.e.,	the	view	scrolled	its	own	contents).	boolean	onSetAlpha(int	alpha)	Invoked	if	there	is	a	Transform	that	involves	alpha.	void	onSizeChanged(int	w,	int	h,	int	oldw,	int	oldh)	This
is	called	during	layout	when	the	size	of	this	view	has	changed.	void	onStartTemporaryDetach()	This	is	called	when	a	container	is	going	to	temporarily	detach	a	child,	with	ViewGroup.detachViewFromParent.	boolean	onTouchEvent(MotionEvent	event)	Implement	this	method	to	handle	touch	screen	motion	events.	boolean
onTrackballEvent(MotionEvent	event)	Implement	this	method	to	handle	trackball	motion	events.	void	onViewTranslationResponse(ViewTranslationResponse	response)	Called	when	the	content	from	View#onCreateViewTranslationRequest	had	been	translated	by	the	TranslationService.	void	onVirtualViewTranslationResponses(LongSparseArray
response)	Called	when	the	content	from	View#onCreateVirtualViewTranslationRequests	had	been	translated	by	the	TranslationService.	void	onVisibilityAggregated(boolean	isVisible)	Called	when	the	user-visibility	of	this	View	is	potentially	affected	by	a	change	to	this	view	itself,	an	ancestor	view	or	the	window	this	view	is	attached	to.	void
onVisibilityChanged(View	changedView,	int	visibility)	Called	when	the	visibility	of	the	view	or	an	ancestor	of	the	view	has	changed.	void	onWindowFocusChanged(boolean	hasWindowFocus)	Called	when	the	window	containing	this	view	gains	or	loses	focus.	void	onWindowSystemUiVisibilityChanged(int	visible)	This	method	was	deprecated	in	API	level
30.	SystemUiVisibility	flags	are	deprecated.	Use	WindowInsetsController	instead.	void	onWindowVisibilityChanged(int	visibility)	Called	when	the	window	containing	has	change	its	visibility	(between	GONE,	INVISIBLE,	and	VISIBLE).	boolean	overScrollBy(int	deltaX,	int	deltaY,	int	scrollX,	int	scrollY,	int	scrollRangeX,	int	scrollRangeY,	int
maxOverScrollX,	int	maxOverScrollY,	boolean	isTouchEvent)	Scroll	the	view	with	standard	behavior	for	scrolling	beyond	the	normal	content	boundaries.	boolean	performAccessibilityAction(int	action,	Bundle	arguments)	Performs	the	specified	accessibility	action	on	the	view.	boolean	performClick()	Call	this	view's	OnClickListener,	if	it	is	defined.
boolean	performContextClick(float	x,	float	y)	Call	this	view's	OnContextClickListener,	if	it	is	defined.	boolean	performContextClick()	Call	this	view's	OnContextClickListener,	if	it	is	defined.	boolean	performHapticFeedback(int	feedbackConstant)	BZZZTT!!1!	Provide	haptic	feedback	to	the	user	for	this	view.	boolean	performHapticFeedback(int
feedbackConstant,	int	flags)	BZZZTT!!1!	Like	performHapticFeedback(int),	with	additional	options.	boolean	performLongClick(float	x,	float	y)	Calls	this	view's	OnLongClickListener,	if	it	is	defined.	boolean	performLongClick()	Calls	this	view's	OnLongClickListener,	if	it	is	defined.	ContentInfo	performReceiveContent(ContentInfo	payload)	Receives	the
given	content.	void	playSoundEffect(int	soundConstant)	Play	a	sound	effect	for	this	view.	boolean	post(Runnable	action)	Causes	the	Runnable	to	be	added	to	the	message	queue.	boolean	postDelayed(Runnable	action,	long	delayMillis)	Causes	the	Runnable	to	be	added	to	the	message	queue,	to	be	run	after	the	specified	amount	of	time	elapses.	void
postInvalidate()	Cause	an	invalidate	to	happen	on	a	subsequent	cycle	through	the	event	loop.	void	postInvalidate(int	left,	int	top,	int	right,	int	bottom)	Cause	an	invalidate	of	the	specified	area	to	happen	on	a	subsequent	cycle	through	the	event	loop.	void	postInvalidateDelayed(long	delayMilliseconds,	int	left,	int	top,	int	right,	int	bottom)	Cause	an
invalidate	of	the	specified	area	to	happen	on	a	subsequent	cycle	through	the	event	loop.	void	postInvalidateDelayed(long	delayMilliseconds)	Cause	an	invalidate	to	happen	on	a	subsequent	cycle	through	the	event	loop.	void	postInvalidateOnAnimation(int	left,	int	top,	int	right,	int	bottom)	Cause	an	invalidate	of	the	specified	area	to	happen	on	the	next
animation	time	step,	typically	the	next	display	frame.	void	postInvalidateOnAnimation()	Cause	an	invalidate	to	happen	on	the	next	animation	time	step,	typically	the	next	display	frame.	void	postOnAnimation(Runnable	action)	Causes	the	Runnable	to	execute	on	the	next	animation	time	step.	void	postOnAnimationDelayed(Runnable	action,	long
delayMillis)	Causes	the	Runnable	to	execute	on	the	next	animation	time	step,	after	the	specified	amount	of	time	elapses.	void	refreshDrawableState()	Call	this	to	force	a	view	to	update	its	drawable	state.	void	releasePointerCapture()	Releases	the	pointer	capture.	boolean	removeCallbacks(Runnable	action)	Removes	the	specified	Runnable	from	the
message	queue.	void	removeOnAttachStateChangeListener(View.OnAttachStateChangeListener	listener)	Remove	a	listener	for	attach	state	changes.	void	removeOnLayoutChangeListener(View.OnLayoutChangeListener	listener)	Remove	a	listener	for	layout	changes.	void	removeOnUnhandledKeyEventListener(View.OnUnhandledKeyEventListener
listener)	Removes	a	listener	which	will	receive	unhandled	KeyEvents.	void	requestApplyInsets()	Ask	that	a	new	dispatch	of	onApplyWindowInsets(android.view.WindowInsets)	be	performed.	void	requestFitSystemWindows()	This	method	was	deprecated	in	API	level	20.	Use	requestApplyInsets()	for	newer	platform	versions.	final	boolean
requestFocus(int	direction)	Call	this	to	try	to	give	focus	to	a	specific	view	or	to	one	of	its	descendants	and	give	it	a	hint	about	what	direction	focus	is	heading.	final	boolean	requestFocus()	Call	this	to	try	to	give	focus	to	a	specific	view	or	to	one	of	its	descendants.	boolean	requestFocus(int	direction,	Rect	previouslyFocusedRect)	Call	this	to	try	to	give
focus	to	a	specific	view	or	to	one	of	its	descendants	and	give	it	hints	about	the	direction	and	a	specific	rectangle	that	the	focus	is	coming	from.	final	boolean	requestFocusFromTouch()	Call	this	to	try	to	give	focus	to	a	specific	view	or	to	one	of	its	descendants.	void	requestLayout()	Call	this	when	something	has	changed	which	has	invalidated	the	layout
of	this	view.	void	requestPointerCapture()	Requests	pointer	capture	mode.	boolean	requestRectangleOnScreen(Rect	rectangle)	Request	that	a	rectangle	of	this	view	be	visible	on	the	screen,	scrolling	if	necessary	just	enough.	boolean	requestRectangleOnScreen(Rect	rectangle,	boolean	immediate)	Request	that	a	rectangle	of	this	view	be	visible	on	the
screen,	scrolling	if	necessary	just	enough.	final	void	requestUnbufferedDispatch(int	source)	Request	unbuffered	dispatch	of	the	given	event	source	class	to	this	view.	final	void	requestUnbufferedDispatch(MotionEvent	event)	Request	unbuffered	dispatch	of	the	given	stream	of	MotionEvents	to	this	View.	final	T	requireViewById(int	id)	Finds	the	first
descendant	view	with	the	given	ID,	the	view	itself	if	the	ID	matches	getId(),	or	throws	an	IllegalArgumentException	if	the	ID	is	invalid	or	there	is	no	matching	view	in	the	hierarchy.	void	resetPivot()	Clears	any	pivot	previously	set	by	a	call	to	setPivotX(float)	or	setPivotY(float).	static	int	resolveSize(int	size,	int	measureSpec)	Version	of
resolveSizeAndState(int,	int,	int)	returning	only	the	MEASURED_SIZE_MASK	bits	of	the	result.	static	int	resolveSizeAndState(int	size,	int	measureSpec,	int	childMeasuredState)	Utility	to	reconcile	a	desired	size	and	state,	with	constraints	imposed	by	a	MeasureSpec.	boolean	restoreDefaultFocus()	Gives	focus	to	the	default-focus	view	in	the	view
hierarchy	that	has	this	view	as	a	root.	void	restoreHierarchyState(SparseArray	container)	Restore	this	view	hierarchy's	frozen	state	from	the	given	container.	final	void	saveAttributeDataForStyleable(Context	context,	int[]	styleable,	AttributeSet	attrs,	TypedArray	t,	int	defStyleAttr,	int	defStyleRes)	Stores	debugging	information	about	attributes.	void
saveHierarchyState(SparseArray	container)	Store	this	view	hierarchy's	frozen	state	into	the	given	container.	void	scheduleDrawable(Drawable	who,	Runnable	what,	long	when)	Schedules	an	action	on	a	drawable	to	occur	at	a	specified	time.	void	scrollBy(int	x,	int	y)	Move	the	scrolled	position	of	your	view.	void	scrollTo(int	x,	int	y)	Set	the	scrolled
position	of	your	view.	void	sendAccessibilityEvent(int	eventType)	Sends	an	accessibility	event	of	the	given	type.	void	sendAccessibilityEventUnchecked(AccessibilityEvent	event)	This	method	behaves	exactly	as	sendAccessibilityEvent(int)	but	takes	as	an	argument	an	empty	AccessibilityEvent	and	does	not	perform	a	check	whether	accessibility	is
enabled.	void	setAccessibilityDelegate(View.AccessibilityDelegate	delegate)	Sets	a	delegate	for	implementing	accessibility	support	via	composition	(as	opposed	to	inheritance).	void	setAccessibilityHeading(boolean	isHeading)	Set	if	view	is	a	heading	for	a	section	of	content	for	accessibility	purposes.	void	setAccessibilityLiveRegion(int	mode)	Sets	the
live	region	mode	for	this	view.	void	setAccessibilityPaneTitle(CharSequence	accessibilityPaneTitle)	Visually	distinct	portion	of	a	window	with	window-like	semantics	are	considered	panes	for	accessibility	purposes.	void	setAccessibilityTraversalAfter(int	afterId)	Sets	the	id	of	a	view	after	which	this	one	is	visited	in	accessibility	traversal.	void
setAccessibilityTraversalBefore(int	beforeId)	Sets	the	id	of	a	view	before	which	this	one	is	visited	in	accessibility	traversal.	void	setActivated(boolean	activated)	Changes	the	activated	state	of	this	view.	void	setAllowClickWhenDisabled(boolean	clickableWhenDisabled)	Enables	or	disables	click	events	for	this	view	when	disabled.	void	setAlpha(float
alpha)	Sets	the	opacity	of	the	view	to	a	value	from	0	to	1,	where	0	means	the	view	is	completely	transparent	and	1	means	the	view	is	completely	opaque.	void	setAnimation(Animation	animation)	Sets	the	next	animation	to	play	for	this	view.	void	setAnimationMatrix(Matrix	matrix)	Changes	the	transformation	matrix	on	the	view.	void
setAutoHandwritingEnabled(boolean	enabled)	Set	whether	this	view	enables	automatic	handwriting	initiation.	void	setAutofillHints(String...	autofillHints)	Sets	the	hints	that	help	an	AutofillService	determine	how	to	autofill	the	view	with	the	user's	data.	void	setAutofillId(AutofillId	id)	Sets	the	unique,	logical	identifier	of	this	view	in	the	activity,	for
autofill	purposes.	void	setBackground(Drawable	background)	Set	the	background	to	a	given	Drawable,	or	remove	the	background.	void	setBackgroundColor(int	color)	Sets	the	background	color	for	this	view.	void	setBackgroundDrawable(Drawable	background)	This	method	was	deprecated	in	API	level	16.	use
setBackground(android.graphics.drawable.Drawable)	instead	void	setBackgroundResource(int	resid)	Set	the	background	to	a	given	resource.	void	setBackgroundTintBlendMode(BlendMode	blendMode)	Specifies	the	blending	mode	used	to	apply	the	tint	specified	by	setBackgroundTintList(android.content.res.ColorStateList)}	to	the	background
drawable.	void	setBackgroundTintList(ColorStateList	tint)	Applies	a	tint	to	the	background	drawable.	void	setBackgroundTintMode(PorterDuff.Mode	tintMode)	Specifies	the	blending	mode	used	to	apply	the	tint	specified	by	setBackgroundTintList(android.content.res.ColorStateList)}	to	the	background	drawable.	final	void	setBottom(int	bottom)	Sets
the	bottom	position	of	this	view	relative	to	its	parent.	void	setCameraDistance(float	distance)	Sets	the	distance	along	the	Z	axis	(orthogonal	to	the	X/Y	plane	on	which	views	are	drawn)	from	the	camera	to	this	view.	void	setClickable(boolean	clickable)	Enables	or	disables	click	events	for	this	view.	void	setClipBounds(Rect	clipBounds)	Sets	a	rectangular
area	on	this	view	to	which	the	view	will	be	clipped	when	it	is	drawn.	void	setClipToOutline(boolean	clipToOutline)	Sets	whether	the	View's	Outline	should	be	used	to	clip	the	contents	of	the	View.	void	setContentCaptureSession(ContentCaptureSession	contentCaptureSession)	Sets	the	(optional)	ContentCaptureSession	associated	with	this	view.	void
setContentDescription(CharSequence	contentDescription)	Sets	the	View's	content	description.	void	setContextClickable(boolean	contextClickable)	Enables	or	disables	context	clicking	for	this	view.	void	setDefaultFocusHighlightEnabled(boolean	defaultFocusHighlightEnabled)	Sets	whether	this	View	should	use	a	default	focus	highlight	when	it	gets
focused	but	doesn't	have	R.attr.state_focused	defined	in	its	background.	void	setDrawingCacheBackgroundColor(int	color)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are
largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View
hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline
clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	setDrawingCacheEnabled(boolean	enabled)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,
intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a
small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time
shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	setDrawingCacheQuality(int	quality)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-
acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered
snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE
bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	setDuplicateParentStateEnabled(boolean	enabled)	Enables	or	disables	the	duplication	of	the	parent's	state	into	this	view.	void	setElevation(float	elevation)	Sets	the	base	elevation	of	this	view,	in
pixels.	void	setEnabled(boolean	enabled)	Set	the	enabled	state	of	this	view.	void	setFadingEdgeLength(int	length)	Set	the	size	of	the	faded	edge	used	to	indicate	that	more	content	in	this	view	is	available.	void	setFilterTouchesWhenObscured(boolean	enabled)	Sets	whether	the	framework	should	discard	touches	when	the	view's	window	is	obscured	by
another	visible	window	at	the	touched	location.	void	setFitsSystemWindows(boolean	fitSystemWindows)	Sets	whether	or	not	this	view	should	account	for	system	screen	decorations	such	as	the	status	bar	and	inset	its	content;	that	is,	controlling	whether	the	default	implementation	of	fitSystemWindows(android.graphics.Rect)	will	be	executed.	void
setFocusable(boolean	focusable)	Set	whether	this	view	can	receive	the	focus.	void	setFocusable(int	focusable)	Sets	whether	this	view	can	receive	focus.	void	setFocusableInTouchMode(boolean	focusableInTouchMode)	Set	whether	this	view	can	receive	focus	while	in	touch	mode.	void	setFocusedByDefault(boolean	isFocusedByDefault)	Sets	whether
this	View	should	receive	focus	when	the	focus	is	restored	for	the	view	hierarchy	containing	this	view.	void	setForceDarkAllowed(boolean	allow)	Sets	whether	or	not	to	allow	force	dark	to	apply	to	this	view.	void	setForeground(Drawable	foreground)	Supply	a	Drawable	that	is	to	be	rendered	on	top	of	all	of	the	content	in	the	view.	void
setForegroundGravity(int	gravity)	Describes	how	the	foreground	is	positioned.	void	setForegroundTintBlendMode(BlendMode	blendMode)	Specifies	the	blending	mode	used	to	apply	the	tint	specified	by	setForegroundTintList(android.content.res.ColorStateList)}	to	the	background	drawable.	void	setForegroundTintList(ColorStateList	tint)	Applies	a
tint	to	the	foreground	drawable.	void	setForegroundTintMode(PorterDuff.Mode	tintMode)	Specifies	the	blending	mode	used	to	apply	the	tint	specified	by	setForegroundTintList(android.content.res.ColorStateList)}	to	the	background	drawable.	void	setHapticFeedbackEnabled(boolean	hapticFeedbackEnabled)	Set	whether	this	view	should	have	haptic
feedback	for	events	such	as	long	presses.	void	setHasTransientState(boolean	hasTransientState)	Set	whether	this	view	is	currently	tracking	transient	state	that	the	framework	should	attempt	to	preserve	when	possible.	void	setHorizontalFadingEdgeEnabled(boolean	horizontalFadingEdgeEnabled)	Define	whether	the	horizontal	edges	should	be	faded
when	this	view	is	scrolled	horizontally.	void	setHorizontalScrollBarEnabled(boolean	horizontalScrollBarEnabled)	Define	whether	the	horizontal	scrollbar	should	be	drawn	or	not.	void	setHorizontalScrollbarThumbDrawable(Drawable	drawable)	Defines	the	horizontal	thumb	drawable	void	setHorizontalScrollbarTrackDrawable(Drawable	drawable)
Defines	the	horizontal	track	drawable	void	setHovered(boolean	hovered)	Sets	whether	the	view	is	currently	hovered.	void	setId(int	id)	Sets	the	identifier	for	this	view.	void	setImportantForAccessibility(int	mode)	Sets	how	to	determine	whether	this	view	is	important	for	accessibility	which	is	if	it	fires	accessibility	events	and	if	it	is	reported	to
accessibility	services	that	query	the	screen.	void	setImportantForAutofill(int	mode)	Sets	the	mode	for	determining	whether	this	view	is	considered	important	for	autofill.	void	setImportantForContentCapture(int	mode)	Sets	the	mode	for	determining	whether	this	view	is	considered	important	for	content	capture.	void	setKeepScreenOn(boolean
keepScreenOn)	Controls	whether	the	screen	should	remain	on,	modifying	the	value	of	KEEP_SCREEN_ON.	void	setKeyboardNavigationCluster(boolean	isCluster)	Set	whether	this	view	is	a	root	of	a	keyboard	navigation	cluster.	void	setLabelFor(int	id)	Sets	the	id	of	a	view	for	which	this	view	serves	as	a	label	for	accessibility	purposes.	void
setLayerPaint(Paint	paint)	Updates	the	Paint	object	used	with	the	current	layer	(used	only	if	the	current	layer	type	is	not	set	to	LAYER_TYPE_NONE).	void	setLayerType(int	layerType,	Paint	paint)	Specifies	the	type	of	layer	backing	this	view.	void	setLayoutDirection(int	layoutDirection)	Set	the	layout	direction	for	this	view.	void
setLayoutParams(ViewGroup.LayoutParams	params)	Set	the	layout	parameters	associated	with	this	view.	final	void	setLeft(int	left)	Sets	the	left	position	of	this	view	relative	to	its	parent.	final	void	setLeftTopRightBottom(int	left,	int	top,	int	right,	int	bottom)	Assign	a	size	and	position	to	this	view.	void	setLongClickable(boolean	longClickable)	Enables
or	disables	long	click	events	for	this	view.	final	void	setMeasuredDimension(int	measuredWidth,	int	measuredHeight)	This	method	must	be	called	by	onMeasure(int,	int)	to	store	the	measured	width	and	measured	height.	void	setMinimumHeight(int	minHeight)	Sets	the	minimum	height	of	the	view.	void	setMinimumWidth(int	minWidth)	Sets	the
minimum	width	of	the	view.	void	setNestedScrollingEnabled(boolean	enabled)	Enable	or	disable	nested	scrolling	for	this	view.	void	setNextClusterForwardId(int	nextClusterForwardId)	Sets	the	id	of	the	view	to	use	as	the	root	of	the	next	keyboard	navigation	cluster.	void	setNextFocusDownId(int	nextFocusDownId)	Sets	the	id	of	the	view	to	use	when
the	next	focus	is	FOCUS_DOWN.	void	setNextFocusForwardId(int	nextFocusForwardId)	Sets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_FORWARD.	void	setNextFocusLeftId(int	nextFocusLeftId)	Sets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_LEFT.	void	setNextFocusRightId(int	nextFocusRightId)	Sets	the	id	of	the	view	to
use	when	the	next	focus	is	FOCUS_RIGHT.	void	setNextFocusUpId(int	nextFocusUpId)	Sets	the	id	of	the	view	to	use	when	the	next	focus	is	FOCUS_UP.	void	setOnApplyWindowInsetsListener(View.OnApplyWindowInsetsListener	listener)	Set	an	OnApplyWindowInsetsListener	to	take	over	the	policy	for	applying	window	insets	to	this	view.	void
setOnCapturedPointerListener(View.OnCapturedPointerListener	l)	Set	a	listener	to	receive	callbacks	when	the	pointer	capture	state	of	a	view	changes.	void	setOnClickListener(View.OnClickListener	l)	Register	a	callback	to	be	invoked	when	this	view	is	clicked.	void	setOnContextClickListener(View.OnContextClickListener	l)	Register	a	callback	to	be
invoked	when	this	view	is	context	clicked.	void	setOnCreateContextMenuListener(View.OnCreateContextMenuListener	l)	Register	a	callback	to	be	invoked	when	the	context	menu	for	this	view	is	being	built.	void	setOnDragListener(View.OnDragListener	l)	Register	a	drag	event	listener	callback	object	for	this	View.	void
setOnFocusChangeListener(View.OnFocusChangeListener	l)	Register	a	callback	to	be	invoked	when	focus	of	this	view	changed.	void	setOnGenericMotionListener(View.OnGenericMotionListener	l)	Register	a	callback	to	be	invoked	when	a	generic	motion	event	is	sent	to	this	view.	void	setOnHoverListener(View.OnHoverListener	l)	Register	a	callback
to	be	invoked	when	a	hover	event	is	sent	to	this	view.	void	setOnKeyListener(View.OnKeyListener	l)	Register	a	callback	to	be	invoked	when	a	hardware	key	is	pressed	in	this	view.	void	setOnLongClickListener(View.OnLongClickListener	l)	Register	a	callback	to	be	invoked	when	this	view	is	clicked	and	held.	void	setOnReceiveContentListener(String[]
mimeTypes,	OnReceiveContentListener	listener)	Sets	the	listener	to	be	used	to	handle	insertion	of	content	into	this	view.	void	setOnScrollChangeListener(View.OnScrollChangeListener	l)	Register	a	callback	to	be	invoked	when	the	scroll	X	or	Y	positions	of	this	view	change.	void
setOnSystemUiVisibilityChangeListener(View.OnSystemUiVisibilityChangeListener	l)	This	method	was	deprecated	in	API	level	30.	Use	WindowInsets#isVisible(int)	to	find	out	about	system	bar	visibilities	by	setting	a	OnApplyWindowInsetsListener	on	this	view.	void	setOnTouchListener(View.OnTouchListener	l)	Register	a	callback	to	be	invoked	when
a	touch	event	is	sent	to	this	view.	void	setOutlineAmbientShadowColor(int	color)	Sets	the	color	of	the	ambient	shadow	that	is	drawn	when	the	view	has	a	positive	Z	or	elevation	value.	void	setOutlineProvider(ViewOutlineProvider	provider)	Sets	the	ViewOutlineProvider	of	the	view,	which	generates	the	Outline	that	defines	the	shape	of	the	shadow	it
casts,	and	enables	outline	clipping.	void	setOutlineSpotShadowColor(int	color)	Sets	the	color	of	the	spot	shadow	that	is	drawn	when	the	view	has	a	positive	Z	or	elevation	value.	void	setOverScrollMode(int	overScrollMode)	Set	the	over-scroll	mode	for	this	view.	void	setPadding(int	left,	int	top,	int	right,	int	bottom)	Sets	the	padding.	void
setPaddingRelative(int	start,	int	top,	int	end,	int	bottom)	Sets	the	relative	padding.	void	setPivotX(float	pivotX)	Sets	the	x	location	of	the	point	around	which	the	view	is	rotated	and	scaled.	void	setPivotY(float	pivotY)	Sets	the	y	location	of	the	point	around	which	the	view	is	rotated	and	scaled.	void	setPointerIcon(PointerIcon	pointerIcon)	Set	the	pointer
icon	for	the	current	view.	final	void	setPreferKeepClear(boolean	preferKeepClear)	Set	a	preference	to	keep	the	bounds	of	this	view	clear	from	floating	windows	above	this	view's	window.	final	void	setPreferKeepClearRects(List	rects)	Set	a	preference	to	keep	the	provided	rects	clear	from	floating	windows	above	this	view's	window.	void
setPressed(boolean	pressed)	Sets	the	pressed	state	for	this	view.	void	setRenderEffect(RenderEffect	renderEffect)	Configure	the	RenderEffect	to	apply	to	this	View.	final	void	setRevealOnFocusHint(boolean	revealOnFocus)	Sets	this	view's	preference	for	reveal	behavior	when	it	gains	focus.	final	void	setRight(int	right)	Sets	the	right	position	of	this
view	relative	to	its	parent.	void	setRotation(float	rotation)	Sets	the	degrees	that	the	view	is	rotated	around	the	pivot	point.	void	setRotationX(float	rotationX)	Sets	the	degrees	that	the	view	is	rotated	around	the	horizontal	axis	through	the	pivot	point.	void	setRotationY(float	rotationY)	Sets	the	degrees	that	the	view	is	rotated	around	the	vertical	axis
through	the	pivot	point.	void	setSaveEnabled(boolean	enabled)	Controls	whether	the	saving	of	this	view's	state	is	enabled	(that	is,	whether	its	onSaveInstanceState()	method	will	be	called).	void	setSaveFromParentEnabled(boolean	enabled)	Controls	whether	the	entire	hierarchy	under	this	view	will	save	its	state	when	a	state	saving	traversal	occurs
from	its	parent.	void	setScaleX(float	scaleX)	Sets	the	amount	that	the	view	is	scaled	in	x	around	the	pivot	point,	as	a	proportion	of	the	view's	unscaled	width.	void	setScaleY(float	scaleY)	Sets	the	amount	that	the	view	is	scaled	in	Y	around	the	pivot	point,	as	a	proportion	of	the	view's	unscaled	width.	void	setScreenReaderFocusable(boolean
screenReaderFocusable)	Sets	whether	this	View	should	be	a	focusable	element	for	screen	readers	and	include	non-focusable	Views	from	its	subtree	when	providing	feedback.	void	setScrollBarDefaultDelayBeforeFade(int	scrollBarDefaultDelayBeforeFade)	Define	the	delay	before	scrollbars	fade.	void	setScrollBarFadeDuration(int
scrollBarFadeDuration)	Define	the	scrollbar	fade	duration.	void	setScrollBarSize(int	scrollBarSize)	Define	the	scrollbar	size.	void	setScrollBarStyle(int	style)	Specify	the	style	of	the	scrollbars.	final	void	setScrollCaptureCallback(ScrollCaptureCallback	callback)	Sets	the	callback	to	receive	scroll	capture	requests.	void	setScrollCaptureHint(int	hint)
Sets	the	scroll	capture	hint	for	this	View.	void	setScrollContainer(boolean	isScrollContainer)	Change	whether	this	view	is	one	of	the	set	of	scrollable	containers	in	its	window.	void	setScrollIndicators(int	indicators,	int	mask)	Sets	the	state	of	the	scroll	indicators	specified	by	the	mask.	void	setScrollIndicators(int	indicators)	Sets	the	state	of	all	scroll
indicators.	void	setScrollX(int	value)	Set	the	horizontal	scrolled	position	of	your	view.	void	setScrollY(int	value)	Set	the	vertical	scrolled	position	of	your	view.	void	setScrollbarFadingEnabled(boolean	fadeScrollbars)	Define	whether	scrollbars	will	fade	when	the	view	is	not	scrolling.	void	setSelected(boolean	selected)	Changes	the	selection	state	of	this
view.	void	setSoundEffectsEnabled(boolean	soundEffectsEnabled)	Set	whether	this	view	should	have	sound	effects	enabled	for	events	such	as	clicking	and	touching.	void	setStateDescription(CharSequence	stateDescription)	Sets	the	View's	state	description.	void	setStateListAnimator(StateListAnimator	stateListAnimator)	Attaches	the	provided
StateListAnimator	to	this	View.	void	setSystemGestureExclusionRects(List	rects)	Sets	a	list	of	areas	within	this	view's	post-layout	coordinate	space	where	the	system	should	not	intercept	touch	or	other	pointing	device	gestures.	void	setSystemUiVisibility(int	visibility)	This	method	was	deprecated	in	API	level	30.	SystemUiVisibility	flags	are	deprecated.
Use	WindowInsetsController	instead.	void	setTag(int	key,	Object	tag)	Sets	a	tag	associated	with	this	view	and	a	key.	void	setTag(Object	tag)	Sets	the	tag	associated	with	this	view.	void	setTextAlignment(int	textAlignment)	Set	the	text	alignment.	void	setTextDirection(int	textDirection)	Set	the	text	direction.	void	setTooltipText(CharSequence
tooltipText)	Sets	the	tooltip	text	which	will	be	displayed	in	a	small	popup	next	to	the	view.	final	void	setTop(int	top)	Sets	the	top	position	of	this	view	relative	to	its	parent.	void	setTouchDelegate(TouchDelegate	delegate)	Sets	the	TouchDelegate	for	this	View.	void	setTransitionAlpha(float	alpha)	This	property	is	intended	only	for	use	by	the	Fade
transition,	which	animates	it	to	produce	a	visual	translucency	that	does	not	side-effect	(or	get	affected	by)	the	real	alpha	property.	final	void	setTransitionName(String	transitionName)	Sets	the	name	of	the	View	to	be	used	to	identify	Views	in	Transitions.	void	setTransitionVisibility(int	visibility)	Changes	the	visibility	of	this	View	without	triggering	any
other	changes.	void	setTranslationX(float	translationX)	Sets	the	horizontal	location	of	this	view	relative	to	its	left	position.	void	setTranslationY(float	translationY)	Sets	the	vertical	location	of	this	view	relative	to	its	top	position.	void	setTranslationZ(float	translationZ)	Sets	the	depth	location	of	this	view	relative	to	its	elevation.	void
setVerticalFadingEdgeEnabled(boolean	verticalFadingEdgeEnabled)	Define	whether	the	vertical	edges	should	be	faded	when	this	view	is	scrolled	vertically.	void	setVerticalScrollBarEnabled(boolean	verticalScrollBarEnabled)	Define	whether	the	vertical	scrollbar	should	be	drawn	or	not.	void	setVerticalScrollbarPosition(int	position)	Set	the	position	of
the	vertical	scroll	bar.	void	setVerticalScrollbarThumbDrawable(Drawable	drawable)	Defines	the	vertical	scrollbar	thumb	drawable	void	setVerticalScrollbarTrackDrawable(Drawable	drawable)	Defines	the	vertical	scrollbar	track	drawable	void	setViewTranslationCallback(ViewTranslationCallback	callback)	Sets	a	ViewTranslationCallback	that	is	used
to	display/hide	the	translated	information.	void	setVisibility(int	visibility)	Set	the	visibility	state	of	this	view.	void	setWillNotCacheDrawing(boolean	willNotCacheDrawing)	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of	hardware-accelerated	rendering	in	API	11.	With	hardware-
acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)	handles	this	with	hardware	rendering.	For	software-rendered
snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with	hardware-only	rendering	features	such	as	Config.HARDWARE
bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	void	setWillNotDraw(boolean	willNotDraw)	If	this	view	doesn't	do	any	drawing	on	its	own,	set	this	flag	to	allow	further	optimizations.	void
setWindowInsetsAnimationCallback(WindowInsetsAnimation.Callback	callback)	Sets	a	WindowInsetsAnimation.Callback	to	be	notified	about	animations	of	windows	that	cause	insets.	void	setX(float	x)	Sets	the	visual	x	position	of	this	view,	in	pixels.	void	setY(float	y)	Sets	the	visual	y	position	of	this	view,	in	pixels.	void	setZ(float	z)	Sets	the	visual	z
position	of	this	view,	in	pixels.	boolean	showContextMenu()	Shows	the	context	menu	for	this	view.	boolean	showContextMenu(float	x,	float	y)	Shows	the	context	menu	for	this	view	anchored	to	the	specified	view-relative	coordinate.	ActionMode	startActionMode(ActionMode.Callback	callback,	int	type)	Start	an	action	mode	with	the	given	type.
ActionMode	startActionMode(ActionMode.Callback	callback)	Start	an	action	mode	with	the	default	type	ActionMode#TYPE_PRIMARY.	void	startAnimation(Animation	animation)	Start	the	specified	animation	now.	final	boolean	startDrag(ClipData	data,	View.DragShadowBuilder	shadowBuilder,	Object	myLocalState,	int	flags)	This	method	was
deprecated	in	API	level	24.	Use	startDragAndDrop()	for	newer	platform	versions.	final	boolean	startDragAndDrop(ClipData	data,	View.DragShadowBuilder	shadowBuilder,	Object	myLocalState,	int	flags)	Starts	a	drag	and	drop	operation.	boolean	startNestedScroll(int	axes)	Begin	a	nestable	scroll	operation	along	the	given	axes.	void	stopNestedScroll()
Stop	a	nested	scroll	in	progress.	String	toString()	Returns	a	string	representation	of	the	object.	void	transformMatrixToGlobal(Matrix	matrix)	Modifies	the	input	matrix	such	that	it	maps	view-local	coordinates	to	on-screen	coordinates.	void	transformMatrixToLocal(Matrix	matrix)	Modifies	the	input	matrix	such	that	it	maps	on-screen	coordinates	to
view-local	coordinates.	void	unscheduleDrawable(Drawable	who,	Runnable	what)	Cancels	a	scheduled	action	on	a	drawable.	void	unscheduleDrawable(Drawable	who)	Unschedule	any	events	associated	with	the	given	Drawable.	final	void	updateDragShadow(View.DragShadowBuilder	shadowBuilder)	Updates	the	drag	shadow	for	the	ongoing	drag	and
drop	operation.	boolean	verifyDrawable(Drawable	who)	If	your	view	subclass	is	displaying	its	own	Drawable	objects,	it	should	override	this	function	and	return	true	for	any	Drawable	it	is	displaying.	boolean	willNotCacheDrawing()	This	method	was	deprecated	in	API	level	28.	The	view	drawing	cache	was	largely	made	obsolete	with	the	introduction	of
hardware-accelerated	rendering	in	API	11.	With	hardware-acceleration,	intermediate	cache	layers	are	largely	unnecessary	and	can	easily	result	in	a	net	loss	in	performance	due	to	the	cost	of	creating	and	updating	the	layer.	In	the	rare	cases	where	caching	layers	are	useful,	such	as	for	alpha	animations,	setLayerType(int,	android.graphics.Paint)
handles	this	with	hardware	rendering.	For	software-rendered	snapshots	of	a	small	part	of	the	View	hierarchy	or	individual	Views	it	is	recommended	to	create	a	Canvas	from	either	a	Bitmap	or	Picture	and	call	draw(android.graphics.Canvas)	on	the	View.	However	these	software-rendered	usages	are	discouraged	and	have	compatibility	issues	with
hardware-only	rendering	features	such	as	Config.HARDWARE	bitmaps,	real-time	shadows,	and	outline	clipping.	For	screenshots	of	the	UI	for	feedback	reports	or	unit	testing	the	PixelCopy	API	is	recommended.	boolean	willNotDraw()	Returns	whether	or	not	this	View	draws	on	its	own.	From	class	java.lang.Object	Object	clone()	Creates	and	returns	a
copy	of	this	object.	boolean	equals(Object	obj)	Indicates	whether	some	other	object	is	"equal	to"	this	one.	void	finalize()	Called	by	the	garbage	collector	on	an	object	when	garbage	collection	determines	that	there	are	no	more	references	to	the	object.	final	Class	getClass()	Returns	the	runtime	class	of	this	Object.	int	hashCode()	Returns	a	hash	code



value	for	the	object.	final	void	notify()	Wakes	up	a	single	thread	that	is	waiting	on	this	object's	monitor.	final	void	notifyAll()	Wakes	up	all	threads	that	are	waiting	on	this	object's	monitor.	String	toString()	Returns	a	string	representation	of	the	object.	final	void	wait(long	timeout,	int	nanos)	Causes	the	current	thread	to	wait	until	another	thread	invokes
the	notify()	method	or	the	notifyAll()	method	for	this	object,	or	some	other	thread	interrupts	the	current	thread,	or	a	certain	amount	of	real	time	has	elapsed.	final	void	wait(long	timeout)	Causes	the	current	thread	to	wait	until	either	another	thread	invokes	the	notify()	method	or	the	notifyAll()	method	for	this	object,	or	a	specified	amount	of	time	has
elapsed.	final	void	wait()	Causes	the	current	thread	to	wait	until	another	thread	invokes	the	notify()	method	or	the	notifyAll()	method	for	this	object.	From	interface	android.view.ViewParent	abstract	void	bringChildToFront(View	child)	Change	the	z	order	of	the	child	so	it's	on	top	of	all	other	children.	abstract	boolean	canResolveLayoutDirection()	Tells
if	this	view	parent	can	resolve	the	layout	direction.	abstract	boolean	canResolveTextAlignment()	Tells	if	this	view	parent	can	resolve	the	text	alignment.	abstract	boolean	canResolveTextDirection()	Tells	if	this	view	parent	can	resolve	the	text	direction.	abstract	void	childDrawableStateChanged(View	child)	This	method	is	called	on	the	parent	when	a
child's	drawable	state	has	changed.	abstract	void	childHasTransientStateChanged(View	child,	boolean	hasTransientState)	Called	when	a	child	view	now	has	or	no	longer	is	tracking	transient	state.	abstract	void	clearChildFocus(View	child)	Called	when	a	child	of	this	parent	is	giving	up	focus	abstract	void	createContextMenu(ContextMenu	menu)	Have
the	parent	populate	the	specified	context	menu	if	it	has	anything	to	add	(and	then	recurse	on	its	parent).	default	OnBackInvokedDispatcher	findOnBackInvokedDispatcherForChild(View	child,	View	requester)	Walk	up	the	View	hierarchy	to	find	the	nearest	OnBackInvokedDispatcher.	abstract	View	focusSearch(View	v,	int	direction)	Find	the	nearest
view	in	the	specified	direction	that	wants	to	take	focus	abstract	void	focusableViewAvailable(View	v)	Tells	the	parent	that	a	new	focusable	view	has	become	available.	abstract	boolean	getChildVisibleRect(View	child,	Rect	r,	Point	offset)	Compute	the	visible	part	of	a	rectangular	region	defined	in	terms	of	a	child	view's	coordinates.	abstract	int
getLayoutDirection()	Return	this	view	parent	layout	direction.	abstract	ViewParent	getParent()	Returns	the	parent	if	it	exists,	or	null.	abstract	ViewParent	getParentForAccessibility()	Gets	the	parent	of	a	given	View	for	accessibility.	abstract	int	getTextAlignment()	Return	this	view	parent	text	alignment.	abstract	int	getTextDirection()	Return	this	view
parent	text	direction.	abstract	void	invalidateChild(View	child,	Rect	r)	This	method	was	deprecated	in	API	level	26.	Use	onDescendantInvalidated(android.view.View,	android.view.View)	instead.	abstract	ViewParent	invalidateChildInParent(int[]	location,	Rect	r)	This	method	was	deprecated	in	API	level	26.	Use
onDescendantInvalidated(android.view.View,	android.view.View)	instead.	abstract	boolean	isLayoutDirectionResolved()	Tells	if	this	view	parent	layout	direction	is	resolved.	abstract	boolean	isLayoutRequested()	Indicates	whether	layout	was	requested	on	this	view	parent.	abstract	boolean	isTextAlignmentResolved()	Tells	if	this	view	parent	text
alignment	is	resolved.	abstract	boolean	isTextDirectionResolved()	Tells	if	this	view	parent	text	direction	is	resolved.	abstract	View	keyboardNavigationClusterSearch(View	currentCluster,	int	direction)	Find	the	nearest	keyboard	navigation	cluster	in	the	specified	direction.	abstract	void	notifySubtreeAccessibilityStateChanged(View	child,	View	source,
int	changeType)	Notifies	a	view	parent	that	the	accessibility	state	of	one	of	its	descendants	has	changed	and	that	the	structure	of	the	subtree	is	different.	default	void	onDescendantInvalidated(View	child,	View	target)	The	target	View	has	been	invalidated,	or	has	had	a	drawing	property	changed	that	requires	the	hierarchy	to	re-render.	abstract
boolean	onNestedFling(View	target,	float	velocityX,	float	velocityY,	boolean	consumed)	Request	a	fling	from	a	nested	scroll.	abstract	boolean	onNestedPreFling(View	target,	float	velocityX,	float	velocityY)	React	to	a	nested	fling	before	the	target	view	consumes	it.	abstract	boolean	onNestedPrePerformAccessibilityAction(View	target,	int	action,	Bundle
arguments)	React	to	an	accessibility	action	delegated	by	a	target	descendant	view	before	the	target	processes	it.	abstract	void	onNestedPreScroll(View	target,	int	dx,	int	dy,	int[]	consumed)	React	to	a	nested	scroll	in	progress	before	the	target	view	consumes	a	portion	of	the	scroll.	abstract	void	onNestedScroll(View	target,	int	dxConsumed,	int
dyConsumed,	int	dxUnconsumed,	int	dyUnconsumed)	React	to	a	nested	scroll	in	progress.	abstract	void	onNestedScrollAccepted(View	child,	View	target,	int	nestedScrollAxes)	React	to	the	successful	claiming	of	a	nested	scroll	operation.	abstract	boolean	onStartNestedScroll(View	child,	View	target,	int	nestedScrollAxes)	React	to	a	descendant	view
initiating	a	nestable	scroll	operation,	claiming	the	nested	scroll	operation	if	appropriate.	abstract	void	onStopNestedScroll(View	target)	React	to	a	nested	scroll	operation	ending.	abstract	void	recomputeViewAttributes(View	child)	Tell	view	hierarchy	that	the	global	view	attributes	need	to	be	re-evaluated.	abstract	void	requestChildFocus(View	child,
View	focused)	Called	when	a	child	of	this	parent	wants	focus	abstract	boolean	requestChildRectangleOnScreen(View	child,	Rect	rectangle,	boolean	immediate)	Called	when	a	child	of	this	group	wants	a	particular	rectangle	to	be	positioned	onto	the	screen.	abstract	void	requestDisallowInterceptTouchEvent(boolean	disallowIntercept)	Called	when	a
child	does	not	want	this	parent	and	its	ancestors	to	intercept	touch	events	with	ViewGroup#onInterceptTouchEvent(MotionEvent).	abstract	void	requestFitSystemWindows()	Ask	that	a	new	dispatch	of	View.fitSystemWindows(Rect)	be	performed.	abstract	void	requestLayout()	Called	when	something	has	changed	which	has	invalidated	the	layout	of	a
child	of	this	view	parent.	abstract	boolean	requestSendAccessibilityEvent(View	child,	AccessibilityEvent	event)	Called	by	a	child	to	request	from	its	parent	to	send	an	AccessibilityEvent.	abstract	void	requestTransparentRegion(View	child)	Called	when	a	child	wants	the	view	hierarchy	to	gather	and	report	transparent	regions	to	the	window
compositor.	abstract	boolean	showContextMenuForChild(View	originalView)	Shows	the	context	menu	for	the	specified	view	or	its	ancestors.	abstract	boolean	showContextMenuForChild(View	originalView,	float	x,	float	y)	Shows	the	context	menu	for	the	specified	view	or	its	ancestors	anchored	to	the	specified	view-relative	coordinate.	abstract
ActionMode	startActionModeForChild(View	originalView,	ActionMode.Callback	callback,	int	type)	Start	an	action	mode	of	a	specific	type	for	the	specified	view.	abstract	ActionMode	startActionModeForChild(View	originalView,	ActionMode.Callback	callback)	Start	an	action	mode	for	the	specified	view	with	the	default	type
ActionMode#TYPE_PRIMARY.	From	interface	android.view.KeyEvent.Callback	abstract	boolean	onKeyDown(int	keyCode,	KeyEvent	event)	Called	when	a	key	down	event	has	occurred.	abstract	boolean	onKeyLongPress(int	keyCode,	KeyEvent	event)	Called	when	a	long	press	has	occurred.	abstract	boolean	onKeyMultiple(int	keyCode,	int	count,
KeyEvent	event)	Called	when	a	user's	interaction	with	an	analog	control,	such	as	flinging	a	trackball,	generates	simulated	down/up	events	for	the	same	key	multiple	times	in	quick	succession.	abstract	boolean	onKeyUp(int	keyCode,	KeyEvent	event)	Called	when	a	key	up	event	has	occurred.	public	static	final	String	SCHEME_GEO	URI	scheme	for	map
address.	Constant	Value:	"geo:0,0?q="	public	static	final	String	SCHEME_MAILTO	URI	scheme	for	email	address.	Constant	Value:	"mailto:"	public	static	final	String	SCHEME_TEL	URI	scheme	for	telephone	number.	Constant	Value:	"tel:"	public	WebView	(Context	context)	Constructs	a	new	WebView	with	an	Activity	Context	object.	Note:	WebView
should	always	be	instantiated	with	an	Activity	Context.	If	instantiated	with	an	Application	Context,	WebView	will	be	unable	to	provide	several	features,	such	as	JavaScript	dialogs	and	autofill.	Parameters	context	Context:	an	Activity	Context	to	access	application	assets	This	value	cannot	be	null.	public	WebView	(Context	context,	AttributeSet	attrs)
Constructs	a	new	WebView	with	layout	parameters.	Parameters	context	Context:	an	Activity	Context	to	access	application	assets	This	value	cannot	be	null.	attrs	AttributeSet:	an	AttributeSet	passed	to	our	parent	This	value	may	be	null.	public	WebView	(Context	context,	AttributeSet	attrs,	int	defStyleAttr)	Constructs	a	new	WebView	with	layout
parameters	and	a	default	style.	Parameters	context	Context:	an	Activity	Context	to	access	application	assets	This	value	cannot	be	null.	attrs	AttributeSet:	an	AttributeSet	passed	to	our	parent	This	value	may	be	null.	defStyleAttr	int:	an	attribute	in	the	current	theme	that	contains	a	reference	to	a	style	resource	that	supplies	default	values	for	the	view.
Can	be	0	to	not	look	for	defaults.	public	WebView	(Context	context,	AttributeSet	attrs,	int	defStyleAttr,	int	defStyleRes)	Constructs	a	new	WebView	with	layout	parameters	and	a	default	style.	Parameters	context	Context:	an	Activity	Context	to	access	application	assets	This	value	cannot	be	null.	attrs	AttributeSet:	an	AttributeSet	passed	to	our	parent
This	value	may	be	null.	defStyleAttr	int:	an	attribute	in	the	current	theme	that	contains	a	reference	to	a	style	resource	that	supplies	default	values	for	the	view.	Can	be	0	to	not	look	for	defaults.	defStyleRes	int:	a	resource	identifier	of	a	style	resource	that	supplies	default	values	for	the	view,	used	only	if	defStyleAttr	is	0	or	can	not	be	found	in	the
theme.	Can	be	0	to	not	look	for	defaults.	public	WebView	(Context	context,	AttributeSet	attrs,	int	defStyleAttr,	boolean	privateBrowsing)	This	constructor	is	deprecated.	Private	browsing	is	no	longer	supported	directly	via	WebView	and	will	be	removed	in	a	future	release.	Prefer	using	WebSettings,	WebViewDatabase,	CookieManager	and	WebStorage
for	fine-grained	control	of	privacy	data.	Constructs	a	new	WebView	with	layout	parameters	and	a	default	style.	Parameters	context	Context:	an	Activity	Context	to	access	application	assets	This	value	cannot	be	null.	attrs	AttributeSet:	an	AttributeSet	passed	to	our	parent	This	value	may	be	null.	defStyleAttr	int:	an	attribute	in	the	current	theme	that
contains	a	reference	to	a	style	resource	that	supplies	default	values	for	the	view.	Can	be	0	to	not	look	for	defaults.	privateBrowsing	boolean:	whether	this	WebView	will	be	initialized	in	private	mode	public	void	addJavascriptInterface	(Object	object,	String	name)	Injects	the	supplied	Java	object	into	this	WebView.	The	object	is	injected	into	all	frames	of
the	web	page,	including	all	the	iframes,	using	the	supplied	name.	This	allows	the	Java	object's	methods	to	be	accessed	from	JavaScript.	For	applications	targeted	to	API	level	Build.VERSION_CODES.JELLY_BEAN_MR1	and	above,	only	public	methods	that	are	annotated	with	JavascriptInterface	can	be	accessed	from	JavaScript.	For	applications
targeted	to	API	level	Build.VERSION_CODES.JELLY_BEAN	or	below,	all	public	methods	(including	the	inherited	ones)	can	be	accessed,	see	the	important	security	note	below	for	implications.	Note	that	injected	objects	will	not	appear	in	JavaScript	until	the	page	is	next	(re)loaded.	JavaScript	should	be	enabled	before	injecting	the	object.	For	example:
class	JsObject	{	@JavascriptInterface	public	String	toString()	{	return	"injectedObject";	}	}	webview.getSettings().setJavaScriptEnabled(true);	webView.addJavascriptInterface(new	JsObject(),	"injectedObject");	webView.loadData("",	"text/html",	null);	webView.loadUrl("javascript:alert(injectedObject.toString())");	IMPORTANT:	This	method	can	be
used	to	allow	JavaScript	to	control	the	host	application.	This	is	a	powerful	feature,	but	also	presents	a	security	risk	for	apps	targeting	Build.VERSION_CODES.JELLY_BEAN	or	earlier.	Apps	that	target	a	version	later	than	Build.VERSION_CODES.JELLY_BEAN	are	still	vulnerable	if	the	app	runs	on	a	device	running	Android	earlier	than	4.2.	The	most
secure	way	to	use	this	method	is	to	target	Build.VERSION_CODES.JELLY_BEAN_MR1	and	to	ensure	the	method	is	called	only	when	running	on	Android	4.2	or	later.	With	these	older	versions,	JavaScript	could	use	reflection	to	access	an	injected	object's	public	fields.	Use	of	this	method	in	a	WebView	containing	untrusted	content	could	allow	an
attacker	to	manipulate	the	host	application	in	unintended	ways,	executing	Java	code	with	the	permissions	of	the	host	application.	Use	extreme	care	when	using	this	method	in	a	WebView	which	could	contain	untrusted	content.	JavaScript	interacts	with	Java	object	on	a	private,	background	thread	of	this	WebView.	Care	is	therefore	required	to	maintain
thread	safety.	Because	the	object	is	exposed	to	all	the	frames,	any	frame	could	obtain	the	object	name	and	call	methods	on	it.	There	is	no	way	to	tell	the	calling	frame's	origin	from	the	app	side,	so	the	app	must	not	assume	that	the	caller	is	trustworthy	unless	the	app	can	guarantee	that	no	third	party	content	is	ever	loaded	into	the	WebView	even	inside
an	iframe.	The	Java	object's	fields	are	not	accessible.	For	applications	targeted	to	API	level	Build.VERSION_CODES.LOLLIPOP	and	above,	methods	of	injected	Java	objects	are	enumerable	from	JavaScript.	Parameters	object	Object:	the	Java	object	to	inject	into	this	WebView's	JavaScript	context.	null	values	are	ignored.	name	String:	the	name	used	to
expose	the	object	in	JavaScript	This	value	cannot	be	null.	public	void	autofill	(SparseArray	values)	Automatically	fills	the	content	of	the	virtual	children	within	this	view.	Views	with	virtual	children	support	the	Autofill	Framework	mainly	by:	Providing	the	metadata	defining	what	the	virtual	children	mean	and	how	they	can	be	autofilled.	Implementing
the	methods	that	autofill	the	virtual	children.	onProvideAutofillVirtualStructure(android.view.ViewStructure,	int)	is	responsible	for	the	former,	this	method	is	responsible	for	the	latter	-	see	autofill(android.view.autofill.AutofillValue)	and	onProvideAutofillVirtualStructure(android.view.ViewStructure,	int)	for	more	info	about	autofill.	If	a	child	value	is
updated	asynchronously,	the	next	call	to	AutofillManager#notifyValueChanged(View,	int,	AutofillValue)	must	happen	after	the	value	was	changed	to	the	autofilled	value.	If	not,	the	child	will	not	be	considered	autofilled.	Note:	To	indicate	that	a	virtual	view	was	autofilled,	?android:attr/autofilledHighlight	should	be	drawn	over	it	until	the	data	changes.
Parameters	values	SparseArray:	map	of	values	to	be	autofilled,	keyed	by	virtual	child	id.	This	value	cannot	be	null.	public	boolean	canGoBack	()	Gets	whether	this	WebView	has	a	back	history	item.	Returns	boolean	true	if	this	WebView	has	a	back	history	item	public	boolean	canGoBackOrForward	(int	steps)	Gets	whether	the	page	can	go	back	or
forward	the	given	number	of	steps.	Parameters	steps	int:	the	negative	or	positive	number	of	steps	to	move	the	history	public	boolean	canGoForward	()	Gets	whether	this	WebView	has	a	forward	history	item.	Returns	boolean	true	if	this	WebView	has	a	forward	history	item	Added	in	API	level	11	Deprecated	in	API	level	17	public	boolean	canZoomIn	()
This	method	was	deprecated	in	API	level	17.	This	method	is	prone	to	inaccuracy	due	to	race	conditions	between	the	web	rendering	and	UI	threads;	prefer	WebViewClient#onScaleChanged.	Gets	whether	this	WebView	can	be	zoomed	in.	Returns	boolean	true	if	this	WebView	can	be	zoomed	in	Added	in	API	level	11	Deprecated	in	API	level	17	public
boolean	canZoomOut	()	This	method	was	deprecated	in	API	level	17.	This	method	is	prone	to	inaccuracy	due	to	race	conditions	between	the	web	rendering	and	UI	threads;	prefer	WebViewClient#onScaleChanged.	Gets	whether	this	WebView	can	be	zoomed	out.	Returns	boolean	true	if	this	WebView	can	be	zoomed	out	Added	in	API	level	1	Deprecated
in	API	level	19	public	Picture	capturePicture	()	This	method	was	deprecated	in	API	level	19.	Use	onDraw(Canvas)	to	obtain	a	bitmap	snapshot	of	the	WebView,	or	saveWebArchive(String)	to	save	the	content	to	a	file.	Gets	a	new	picture	that	captures	the	current	contents	of	this	WebView.	The	picture	is	of	the	entire	document	being	displayed,	and	is	not
limited	to	the	area	currently	displayed	by	this	WebView.	Also,	the	picture	is	a	static	copy	and	is	unaffected	by	later	changes	to	the	content	being	displayed.	Note	that	due	to	internal	changes,	for	API	levels	between	Build.VERSION_CODES.HONEYCOMB	and	Build.VERSION_CODES.ICE_CREAM_SANDWICH	inclusive,	the	picture	does	not	include	fixed
position	elements	or	scrollable	divs.	Note	that	from	Build.VERSION_CODES.JELLY_BEAN_MR1	the	returned	picture	should	only	be	drawn	into	bitmap-backed	Canvas	-	using	any	other	type	of	Canvas	will	involve	additional	conversion	at	a	cost	in	memory	and	performance.	Returns	Picture	a	picture	that	captures	the	current	contents	of	this	WebView
public	void	clearCache	(boolean	includeDiskFiles)	Clears	the	resource	cache.	Note	that	the	cache	is	per-application,	so	this	will	clear	the	cache	for	all	WebViews	used.	Parameters	includeDiskFiles	boolean:	if	false,	only	the	RAM	cache	is	cleared	public	static	void	clearClientCertPreferences	(Runnable	onCleared)	Clears	the	client	certificate	preferences
stored	in	response	to	proceeding/cancelling	client	cert	requests.	Note	that	WebView	automatically	clears	these	preferences	when	the	system	keychain	is	updated.	The	preferences	are	shared	by	all	the	WebViews	that	are	created	by	the	embedder	application.	Parameters	onCleared	Runnable:	A	runnable	to	be	invoked	when	client	certs	are	cleared.	The
runnable	will	be	called	in	UI	thread.	This	value	may	be	null.	public	void	clearFormData	()	Removes	the	autocomplete	popup	from	the	currently	focused	form	field,	if	present.	Note	this	only	affects	the	display	of	the	autocomplete	popup,	it	does	not	remove	any	saved	form	data	from	this	WebView's	store.	To	do	that,	use
WebViewDatabase#clearFormData.	public	void	clearHistory	()	Tells	this	WebView	to	clear	its	internal	back/forward	list.	public	void	clearSslPreferences	()	Clears	the	SSL	preferences	table	stored	in	response	to	proceeding	with	SSL	certificate	errors.	Added	in	API	level	1	Deprecated	in	API	level	18	public	void	clearView	()	This	method	was	deprecated
in	API	level	18.	Use	WebView.loadUrl("about:blank")	to	reliably	reset	the	view	state	and	release	page	resources	(including	any	running	JavaScript).	Clears	this	WebView	so	that	onDraw()	will	draw	nothing	but	white	background,	and	onMeasure()	will	return	0	if	MeasureSpec	is	not	MeasureSpec.EXACTLY.	public	void	computeScroll	()	Called	by	a
parent	to	request	that	a	child	update	its	values	for	mScrollX	and	mScrollY	if	necessary.	This	will	typically	be	done	if	the	child	is	animating	a	scroll	using	a	Scroller	object.	public	WebBackForwardList	copyBackForwardList	()	Gets	the	WebBackForwardList	for	this	WebView.	This	contains	the	back/forward	list	for	use	in	querying	each	item	in	the	history
stack.	This	is	a	copy	of	the	private	WebBackForwardList	so	it	contains	only	a	snapshot	of	the	current	state.	Multiple	calls	to	this	method	may	return	different	objects.	The	object	returned	from	this	method	will	not	be	updated	to	reflect	any	new	state.	Returns	WebBackForwardList	This	value	cannot	be	null.	public	PrintDocumentAdapter
createPrintDocumentAdapter	(String	documentName)	Creates	a	PrintDocumentAdapter	that	provides	the	content	of	this	WebView	for	printing.	The	adapter	works	by	converting	the	WebView	contents	to	a	PDF	stream.	The	WebView	cannot	be	drawn	during	the	conversion	process	-	any	such	draws	are	undefined.	It	is	recommended	to	use	a	dedicated
off	screen	WebView	for	the	printing.	If	necessary,	an	application	may	temporarily	hide	a	visible	WebView	by	using	a	custom	PrintDocumentAdapter	instance	wrapped	around	the	object	returned	and	observing	the	onStart	and	onFinish	methods.	See	PrintDocumentAdapter	for	more	information.	Parameters	documentName	String:	The	user-facing	name
of	the	printed	document.	See	PrintDocumentInfo	This	value	cannot	be	null.	Returns	PrintDocumentAdapter	This	value	cannot	be	null.	public	WebMessagePort[]	createWebMessageChannel	()	Creates	a	message	channel	to	communicate	with	JS	and	returns	the	message	ports	that	represent	the	endpoints	of	this	message	channel.	The	HTML5	message
channel	functionality	is	described	here	The	returned	message	channels	are	entangled	and	already	in	started	state.	Returns	WebMessagePort[]	the	two	message	ports	that	form	the	message	channel.	This	value	cannot	be	null.	public	void	destroy	()	Destroys	the	internal	state	of	this	WebView.	This	method	should	be	called	after	this	WebView	has	been
removed	from	the	view	system.	No	other	methods	may	be	called	on	this	WebView	after	destroy.	public	static	void	disableWebView	()	Indicate	that	the	current	process	does	not	intend	to	use	WebView,	and	that	an	exception	should	be	thrown	if	a	WebView	is	created	or	any	other	methods	in	the	android.webkit	package	are	used.	Applications	with
multiple	processes	may	wish	to	call	this	in	processes	that	are	not	intended	to	use	WebView	to	avoid	accidentally	incurring	the	memory	usage	of	initializing	WebView	in	long-lived	processes	that	have	no	need	for	it,	and	to	prevent	potential	data	directory	conflicts	(see	setDataDirectorySuffix(String)).	For	example,	an	audio	player	application	with	one
process	for	its	activities	and	another	process	for	its	playback	service	may	wish	to	call	this	method	in	the	playback	service's	Service.onCreate().	public	void	dispatchCreateViewTranslationRequest	(Map	viewIds,	int[]	supportedFormats,	TranslationCapability	capability,	List	requests)	Dispatch	to	collect	the	ViewTranslationRequests	for	translation
purpose	by	traversing	the	hierarchy	when	the	app	requests	ui	translation.	Typically,	this	method	should	only	be	overridden	by	subclasses	that	provide	a	view	hierarchy	(such	as	ViewGroup).	Other	classes	should	override	View#onCreateViewTranslationRequest	for	normal	view	or	override	View#onVirtualViewTranslationResponses	for	view	contains
virtual	children.	When	requested	to	start	the	ui	translation,	the	system	will	call	this	method	to	traverse	the	view	hierarchy	to	collect	ViewTranslationRequests	and	create	a	Translator	to	translate	the	requests.	All	the	ViewTranslationRequests	must	be	added	when	the	traversal	is	done.	The	default	implementation	calls
View#onCreateViewTranslationRequest	for	normal	view	or	calls	View#onVirtualViewTranslationResponses	for	view	contains	virtual	children	to	build	ViewTranslationRequest	if	the	view	should	be	translated.	The	view	is	marked	as	having	transient	state	so	that	recycling	of	views	doesn't	prevent	the	system	from	attaching	the	response	to	it.	Therefore,
if	overriding	this	method,	you	should	set	or	reset	the	transient	state.	The	implementation	calls	dispatchCreateViewTranslationRequest(Map,	int[],	TranslationCapability,	List)	for	all	the	child	views.	Parameters	viewIds	Map:	This	value	cannot	be	null.	supportedFormats	int:	This	value	cannot	be	null.	Value	is	TranslationSpec.DATA_FORMAT_TEXT
capability	TranslationCapability:	This	value	may	be	null.	requests	List:	This	value	cannot	be	null.	public	boolean	dispatchKeyEvent	(KeyEvent	event)	Dispatch	a	key	event	to	the	next	view	on	the	focus	path.	This	path	runs	from	the	top	of	the	view	tree	down	to	the	currently	focused	view.	If	this	view	has	focus,	it	will	dispatch	to	itself.	Otherwise	it	will
dispatch	the	next	node	down	the	focus	path.	This	method	also	fires	any	key	listeners.	Parameters	event	KeyEvent:	The	key	event	to	be	dispatched.	Returns	boolean	True	if	the	event	was	handled,	false	otherwise.	public	void	documentHasImages	(Message	response)	Queries	the	document	to	see	if	it	contains	any	image	references.	The	message	object
will	be	dispatched	with	arg1	being	set	to	1	if	images	were	found	and	0	if	the	document	does	not	reference	any	images.	Parameters	response	Message:	the	message	that	will	be	dispatched	with	the	result	This	value	cannot	be	null.	public	static	void	enableSlowWholeDocumentDraw	()	For	apps	targeting	the	L	release,	WebView	has	a	new	default
behavior	that	reduces	memory	footprint	and	increases	performance	by	intelligently	choosing	the	portion	of	the	HTML	document	that	needs	to	be	drawn.	These	optimizations	are	transparent	to	the	developers.	However,	under	certain	circumstances,	an	App	developer	may	want	to	disable	them:	When	an	app	uses	onDraw(Canvas)	to	do	own	drawing	and
accesses	portions	of	the	page	that	is	way	outside	the	visible	portion	of	the	page.	When	an	app	uses	capturePicture()	to	capture	a	very	large	HTML	document.	Note	that	capturePicture	is	a	deprecated	API.	Enabling	drawing	the	entire	HTML	document	has	a	significant	performance	cost.	This	method	should	be	called	before	any	WebViews	are	created.
public	void	evaluateJavascript	(String	script,	ValueCallback	resultCallback)	Asynchronously	evaluates	JavaScript	in	the	context	of	the	currently	displayed	page.	If	non-null,	resultCallback	will	be	invoked	with	any	result	returned	from	that	execution.	This	method	must	be	called	on	the	UI	thread	and	the	callback	will	be	made	on	the	UI	thread.
Compatibility	note.	Applications	targeting	Build.VERSION_CODES.N	or	later,	JavaScript	state	from	an	empty	WebView	is	no	longer	persisted	across	navigations	like	loadUrl(java.lang.String).	For	example,	global	variables	and	functions	defined	before	calling	loadUrl(java.lang.String)	will	not	exist	in	the	loaded	page.	Applications	should	use
addJavascriptInterface(Object,	String)	instead	to	persist	JavaScript	objects	across	navigations.	Parameters	script	String:	the	JavaScript	to	execute.	This	value	cannot	be	null.	resultCallback	ValueCallback:	A	callback	to	be	invoked	when	the	script	execution	completes	with	the	result	of	the	execution	(if	any).	May	be	null	if	no	notification	of	the	result	is
required.	Added	in	API	level	1	Deprecated	in	API	level	28	public	static	String	findAddress	(String	addr)	This	method	was	deprecated	in	API	level	28.	This	method	is	superseded	by	TextClassifier#generateLinks(	android.view.textclassifier.TextLinks.Request).	Avoid	using	this	method	even	when	targeting	API	levels	where	no	alternative	is	available.	Gets
the	first	substring	which	appears	to	be	the	address	of	a	physical	location.	Only	addresses	in	the	United	States	can	be	detected,	which	must	consist	of:	a	house	number	a	street	name	a	street	type	(Road,	Circle,	etc),	either	spelled	out	or	abbreviated	a	city	name	a	state	or	territory,	either	spelled	out	or	two-letter	abbr	an	optional	5	digit	or	9	digit	zip
code	All	names	must	be	correctly	capitalized,	and	the	zip	code,	if	present,	must	be	valid	for	the	state.	The	street	type	must	be	a	standard	USPS	spelling	or	abbreviation.	The	state	or	territory	must	also	be	spelled	or	abbreviated	using	USPS	standards.	The	house	number	may	not	exceed	five	digits.	Note:	This	function	is	deprecated	and	should	be
avoided	on	all	API	levels,	as	it	cannot	detect	addresses	outside	of	the	United	States	and	has	a	high	rate	of	false	positives.	On	API	level	Build.VERSION_CODES.O_MR1	and	earlier,	it	also	causes	the	entire	WebView	implementation	to	be	loaded	and	initialized,	which	can	throw	AndroidRuntimeException	or	other	exceptions	if	the	WebView
implementation	is	currently	being	updated.	Parameters	addr	String:	the	string	to	search	for	addresses	Returns	String	the	address,	or	if	no	address	is	found,	null	public	void	findAllAsync	(String	find)	Finds	all	instances	of	find	on	the	page	and	highlights	them,	asynchronously.	Notifies	any	registered	FindListener.	Successive	calls	to	this	will	cancel	any
pending	searches.	Parameters	find	String:	the	string	to	find.	This	value	cannot	be	null.	See	also:	setFindListener(WebView.FindListener)	public	View	findFocus	()	Find	the	view	in	the	hierarchy	rooted	at	this	view	that	currently	has	focus.	Returns	View	The	view	that	currently	has	focus,	or	null	if	no	focused	view	can	be	found.	public	void	flingScroll	(int
vx,	int	vy)	Added	in	API	level	7	Deprecated	in	API	level	19	public	void	freeMemory	()	This	method	was	deprecated	in	API	level	19.	Memory	caches	are	automatically	dropped	when	no	longer	needed,	and	in	response	to	system	memory	pressure.	Informs	this	WebView	that	memory	is	low	so	that	it	can	free	any	available	memory.	public	CharSequence
getAccessibilityClassName	()	Return	the	class	name	of	this	object	to	be	used	for	accessibility	purposes.	Subclasses	should	only	override	this	if	they	are	implementing	something	that	should	be	seen	as	a	completely	new	class	of	view	when	used	by	accessibility,	unrelated	to	the	class	it	is	deriving	from.	This	is	used	to	fill	in
AccessibilityNodeInfo.setClassName.	public	SslCertificate	getCertificate	()	Gets	the	SSL	certificate	for	the	main	top-level	page	or	null	if	there	is	no	certificate	(the	site	is	not	secure).	Returns	SslCertificate	the	SSL	certificate	for	the	main	top-level	page	public	int	getContentHeight	()	Gets	the	height	of	the	HTML	content.	Returns	int	the	height	of	the
HTML	content	public	static	PackageInfo	getCurrentWebViewPackage	()	If	WebView	has	already	been	loaded	into	the	current	process	this	method	will	return	the	package	that	was	used	to	load	it.	Otherwise,	the	package	that	would	be	used	if	the	WebView	was	loaded	right	now	will	be	returned;	this	does	not	cause	WebView	to	be	loaded,	so	this
information	may	become	outdated	at	any	time.	The	WebView	package	changes	either	when	the	current	WebView	package	is	updated,	disabled,	or	uninstalled.	It	can	also	be	changed	through	a	Developer	Setting.	If	the	WebView	package	changes,	any	app	process	that	has	loaded	WebView	will	be	killed.	The	next	time	the	app	starts	and	loads	WebView
it	will	use	the	new	WebView	package	instead.	Returns	PackageInfo	the	current	WebView	package,	or	null	if	there	is	none.	public	Bitmap	getFavicon	()	Gets	the	favicon	for	the	current	page.	This	is	the	favicon	of	the	current	page	until	WebViewClient.onReceivedIcon	is	called.	Returns	Bitmap	the	favicon	for	the	current	page	or	null	if	the	page	doesn't
have	one	or	if	no	page	has	been	loaded	public	Handler	getHandler	()	Returns	Handler	A	handler	associated	with	the	thread	running	the	View.	This	handler	can	be	used	to	pump	events	in	the	UI	events	queue.	public	WebView.HitTestResult	getHitTestResult	()	Gets	a	HitTestResult	based	on	the	current	cursor	node.	If	a	HTML::a	tag	is	found	and	the
anchor	has	a	non-JavaScript	URL,	the	HitTestResult	type	is	set	to	SRC_ANCHOR_TYPE	and	the	URL	is	set	in	the	"extra"	field.	If	the	anchor	does	not	have	a	URL	or	if	it	is	a	JavaScript	URL,	the	type	will	be	UNKNOWN_TYPE	and	the	URL	has	to	be	retrieved	through	requestFocusNodeHref(Message)	asynchronously.	If	a	HTML::img	tag	is	found,	the
HitTestResult	type	is	set	to	IMAGE_TYPE	and	the	URL	is	set	in	the	"extra"	field.	A	type	of	SRC_IMAGE_ANCHOR_TYPE	indicates	an	anchor	with	a	URL	that	has	an	image	as	a	child	node.	If	a	phone	number	is	found,	the	HitTestResult	type	is	set	to	PHONE_TYPE	and	the	phone	number	is	set	in	the	"extra"	field	of	HitTestResult.	If	a	map	address	is
found,	the	HitTestResult	type	is	set	to	GEO_TYPE	and	the	address	is	set	in	the	"extra"	field	of	HitTestResult.	If	an	email	address	is	found,	the	HitTestResult	type	is	set	to	EMAIL_TYPE	and	the	email	is	set	in	the	"extra"	field	of	HitTestResult.	Otherwise,	HitTestResult	type	is	set	to	UNKNOWN_TYPE.	Returns	WebView.HitTestResult	This	value	cannot	be
null.	Added	in	API	level	1	Deprecated	in	API	level	26	public	String[]	getHttpAuthUsernamePassword	(String	host,	String	realm)	This	method	was	deprecated	in	API	level	26.	Use	WebViewDatabase#getHttpAuthUsernamePassword	instead	Retrieves	HTTP	authentication	credentials	for	a	given	host	and	realm	from	the	WebViewDatabase	instance.
Parameters	host	String:	the	host	to	which	the	credentials	apply	realm	String:	the	realm	to	which	the	credentials	apply	Returns	String[]	the	credentials	as	a	String	array,	if	found.	The	first	element	is	the	username	and	the	second	element	is	the	password.	null	if	no	credentials	are	found.	public	String	getOriginalUrl	()	Gets	the	original	URL	for	the
current	page.	This	is	not	always	the	same	as	the	URL	passed	to	WebViewClient.onPageStarted	because	although	the	load	for	that	URL	has	begun,	the	current	page	may	not	have	changed.	Also,	there	may	have	been	redirects	resulting	in	a	different	URL	to	that	originally	requested.	Returns	String	the	URL	that	was	originally	requested	for	the	current
page	or	null	if	no	page	has	been	loaded	public	int	getProgress	()	Gets	the	progress	for	the	current	page.	Returns	int	the	progress	for	the	current	page	between	0	and	100	public	static	Uri	getSafeBrowsingPrivacyPolicyUrl	()	Returns	a	URL	pointing	to	the	privacy	policy	for	Safe	Browsing	reporting.	Returns	Uri	the	url	pointing	to	a	privacy	policy
document	which	can	be	displayed	to	users.	This	value	cannot	be	null.	Added	in	API	level	1	Deprecated	in	API	level	17	public	float	getScale	()	This	method	was	deprecated	in	API	level	17.	This	method	is	prone	to	inaccuracy	due	to	race	conditions	between	the	web	rendering	and	UI	threads;	prefer	WebViewClient#onScaleChanged.	Gets	the	current
scale	of	this	WebView.	Returns	float	the	current	scale	public	WebSettings	getSettings	()	Gets	the	WebSettings	object	used	to	control	the	settings	for	this	WebView.	Returns	WebSettings	a	WebSettings	object	that	can	be	used	to	control	this	WebView's	settings	This	value	cannot	be	null.	public	String	getTitle	()	Gets	the	title	for	the	current	page.	This	is
the	title	of	the	current	page	until	WebViewClient.onReceivedTitle	is	called.	Returns	String	the	title	for	the	current	page	or	null	if	no	page	has	been	loaded	public	String	getUrl	()	Gets	the	URL	for	the	current	page.	This	is	not	always	the	same	as	the	URL	passed	to	WebViewClient.onPageStarted	because	although	the	load	for	that	URL	has	begun,	the
current	page	may	not	have	changed.	Returns	String	the	URL	for	the	current	page	or	null	if	no	page	has	been	loaded	public	static	ClassLoader	getWebViewClassLoader	()	Returns	the	ClassLoader	used	to	load	internal	WebView	classes.	This	method	is	meant	for	use	by	the	WebView	Support	Library,	there	is	no	reason	to	use	this	method	otherwise.
Returns	ClassLoader	This	value	cannot	be	null.	public	Looper	getWebViewLooper	()	Returns	the	Looper	corresponding	to	the	thread	on	which	WebView	calls	must	be	made.	Returns	Looper	This	value	cannot	be	null.	public	WebViewRenderProcess	getWebViewRenderProcess	()	Gets	a	handle	to	the	WebView	renderer	process	associated	with	this
WebView.	In	Build.VERSION_CODES.O	and	above,	WebView	may	run	in	"multiprocess"	mode.	In	multiprocess	mode,	rendering	of	web	content	is	performed	by	a	sandboxed	renderer	process	separate	to	the	application	process.	This	renderer	process	may	be	shared	with	other	WebViews	in	the	application,	but	is	not	shared	with	other	application
processes.	If	WebView	is	running	in	multiprocess	mode,	this	method	returns	a	handle	to	the	renderer	process	associated	with	the	WebView,	which	can	be	used	to	control	the	renderer	process.	public	void	goBack	()	Goes	back	in	the	history	of	this	WebView.	public	void	goBackOrForward	(int	steps)	Goes	to	the	history	item	that	is	the	number	of	steps
away	from	the	current	item.	Steps	is	negative	if	backward	and	positive	if	forward.	Parameters	steps	int:	the	number	of	steps	to	take	back	or	forward	in	the	back	forward	list	public	void	goForward	()	Goes	forward	in	the	history	of	this	WebView.	public	void	invokeZoomPicker	()	Invokes	the	graphical	zoom	picker	widget	for	this	WebView.	This	will	result
in	the	zoom	widget	appearing	on	the	screen	to	control	the	zoom	level	of	this	WebView.	public	boolean	isPrivateBrowsingEnabled	()	Gets	whether	private	browsing	is	enabled	in	this	WebView.	public	boolean	isVisibleToUserForAutofill	(int	virtualId)	Computes	whether	this	virtual	autofill	view	is	visible	to	the	user.	Note:	By	default	it	returns	true,	but
views	providing	a	virtual	hierarchy	view	must	override	it.	Returns	boolean	Whether	the	view	is	visible	on	the	screen.	public	void	loadData	(String	data,	String	mimeType,	String	encoding)	Loads	the	given	data	into	this	WebView	using	a	'data'	scheme	URL.	Note	that	JavaScript's	same	origin	policy	means	that	script	running	in	a	page	loaded	using	this
method	will	be	unable	to	access	content	loaded	using	any	scheme	other	than	'data',	including	'http(s)'.	To	avoid	this	restriction,	use	loadDataWithBaseURL()	with	an	appropriate	base	URL.	The	encoding	parameter	specifies	whether	the	data	is	base64	or	URL	encoded.	If	the	data	is	base64	encoded,	the	value	of	the	encoding	parameter	must	be
"base64".	HTML	can	be	encoded	with	Base64.encodeToString(byte[],	int)	like	so:	String	unencodedHtml	=	"'%28'	is	the	code	for	'('";	String	encodedHtml	=	Base64.encodeToString(unencodedHtml.getBytes(),	Base64.NO_PADDING);	webView.loadData(encodedHtml,	"text/html",	"base64");	For	all	other	values	of	encoding	(including	null)	it	is	assumed
that	the	data	uses	ASCII	encoding	for	octets	inside	the	range	of	safe	URL	characters	and	use	the	standard	%xx	hex	encoding	of	URLs	for	octets	outside	that	range.	See	RFC	3986	for	more	information.	Applications	targeting	Build.VERSION_CODES.Q	or	later	must	either	use	base64	or	encode	any	#	characters	in	the	content	as	%23,	otherwise	they	will
be	treated	as	the	end	of	the	content	and	the	remaining	text	used	as	a	document	fragment	identifier.	The	mimeType	parameter	specifies	the	format	of	the	data.	If	WebView	can't	handle	the	specified	MIME	type,	it	will	download	the	data.	If	null,	defaults	to	'text/html'.	The	'data'	scheme	URL	formed	by	this	method	uses	the	default	US-ASCII	charset.	If
you	need	to	set	a	different	charset,	you	should	form	a	'data'	scheme	URL	which	explicitly	specifies	a	charset	parameter	in	the	mediatype	portion	of	the	URL	and	call	loadUrl(java.lang.String)	instead.	Note	that	the	charset	obtained	from	the	mediatype	portion	of	a	data	URL	always	overrides	that	specified	in	the	HTML	or	XML	document	itself.	Content
loaded	using	this	method	will	have	a	window.origin	value	of	"null".	This	must	not	be	considered	to	be	a	trusted	origin	by	the	application	or	by	any	JavaScript	code	running	inside	the	WebView	(for	example,	event	sources	in	DOM	event	handlers	or	web	messages),	because	malicious	content	can	also	create	frames	with	a	null	origin.	If	you	need	to
identify	the	main	frame's	origin	in	a	trustworthy	way,	you	should	use	loadDataWithBaseURL()	with	a	valid	HTTP	or	HTTPS	base	URL	to	set	the	origin.	Parameters	data	String:	a	String	of	data	in	the	given	encoding	This	value	cannot	be	null.	mimeType	String:	the	MIME	type	of	the	data,	e.g.	'text/html'.	This	value	may	be	null.	encoding	String:	the
encoding	of	the	data	This	value	may	be	null.	public	void	loadDataWithBaseURL	(String	baseUrl,	String	data,	String	mimeType,	String	encoding,	String	historyUrl)	Loads	the	given	data	into	this	WebView,	using	baseUrl	as	the	base	URL	for	the	content.	The	base	URL	is	used	both	to	resolve	relative	URLs	and	when	applying	JavaScript's	same	origin
policy.	The	historyUrl	is	used	for	the	history	entry.	The	mimeType	parameter	specifies	the	format	of	the	data.	If	WebView	can't	handle	the	specified	MIME	type,	it	will	download	the	data.	If	null,	defaults	to	'text/html'.	Note	that	content	specified	in	this	way	can	access	local	device	files	(via	'file'	scheme	URLs)	only	if	baseUrl	specifies	a	scheme	other
than	'http',	'https',	'ftp',	'ftps',	'about'	or	'javascript'.	If	the	base	URL	uses	the	data	scheme,	this	method	is	equivalent	to	calling	loadData()	and	the	historyUrl	is	ignored,	and	the	data	will	be	treated	as	part	of	a	data:	URL,	including	the	requirement	that	the	content	be	URL-encoded	or	base64	encoded.	If	the	base	URL	uses	any	other	scheme,	then	the
data	will	be	loaded	into	the	WebView	as	a	plain	string	(i.e.	not	part	of	a	data	URL)	and	any	URL-encoded	entities	in	the	string	will	not	be	decoded.	Note	that	the	baseUrl	is	sent	in	the	'Referer'	HTTP	header	when	requesting	subresources	(images,	etc.)	of	the	page	loaded	using	this	method.	If	a	valid	HTTP	or	HTTPS	base	URL	is	not	specified	in	baseUrl,
then	content	loaded	using	this	method	will	have	a	window.origin	value	of	"null".	This	must	not	be	considered	to	be	a	trusted	origin	by	the	application	or	by	any	JavaScript	code	running	inside	the	WebView	(for	example,	event	sources	in	DOM	event	handlers	or	web	messages),	because	malicious	content	can	also	create	frames	with	a	null	origin.	If	you
need	to	identify	the	main	frame's	origin	in	a	trustworthy	way,	you	should	use	a	valid	HTTP	or	HTTPS	base	URL	to	set	the	origin.	Parameters	baseUrl	String:	the	URL	to	use	as	the	page's	base	URL.	If	null	defaults	to	'about:blank'.	data	String:	a	String	of	data	in	the	given	encoding	This	value	cannot	be	null.	mimeType	String:	the	MIME	type	of	the	data,
e.g.	'text/html'.	This	value	may	be	null.	encoding	String:	the	encoding	of	the	data	This	value	may	be	null.	historyUrl	String:	the	URL	to	use	as	the	history	entry.	If	null	defaults	to	'about:blank'.	If	non-null,	this	must	be	a	valid	URL.	public	void	loadUrl	(String	url,	Map	additionalHttpHeaders)	Loads	the	given	URL	with	additional	HTTP	headers,	specified
as	a	map	from	name	to	value.	Note	that	if	this	map	contains	any	of	the	headers	that	are	set	by	default	by	this	WebView,	such	as	those	controlling	caching,	accept	types	or	the	User-Agent,	their	values	may	be	overridden	by	this	WebView's	defaults.	Some	older	WebView	implementations	require	additionalHttpHeaders	to	be	mutable.	Also	see
compatibility	note	on	evaluateJavascript(String,	ValueCallback).	Parameters	url	String:	the	URL	of	the	resource	to	load	This	value	cannot	be	null.	additionalHttpHeaders	Map:	map	with	additional	headers	This	value	cannot	be	null.	public	WindowInsets	onApplyWindowInsets	(WindowInsets	insets)	Called	when	the	view	should	apply	WindowInsets
according	to	its	internal	policy.	This	method	should	be	overridden	by	views	that	wish	to	apply	a	policy	different	from	or	in	addition	to	the	default	behavior.	Clients	that	wish	to	force	a	view	subtree	to	apply	insets	should	call	dispatchApplyWindowInsets(android.view.WindowInsets).	Clients	may	supply	an	OnApplyWindowInsetsListener	to	a	view.	If	one
is	set	it	will	be	called	during	dispatch	instead	of	this	method.	The	listener	may	optionally	call	this	method	from	its	own	implementation	if	it	wishes	to	apply	the	view's	default	insets	policy	in	addition	to	its	own.	Implementations	of	this	method	should	either	return	the	insets	parameter	unchanged	or	a	new	WindowInsets	cloned	from	the	supplied	insets
with	any	insets	consumed	that	this	view	applied	itself.	This	allows	new	inset	types	added	in	future	platform	versions	to	pass	through	existing	implementations	unchanged	without	being	erroneously	consumed.	By	default	if	a	view's	fitsSystemWindows	property	is	set	then	the	view	will	consume	the	system	window	insets	and	apply	them	as	padding	for
the	view.	Parameters	insets	WindowInsets:	Insets	to	apply	Returns	WindowInsets	The	supplied	insets	with	any	applied	insets	consumed	public	boolean	onCheckIsTextEditor	()	Check	whether	the	called	view	is	a	text	editor,	in	which	case	it	would	make	sense	to	automatically	display	a	soft	input	window	for	it.	Subclasses	should	override	this	if	they
implement	onCreateInputConnection(android.view.inputmethod.EditorInfo)	to	return	true	if	a	call	on	that	method	would	return	a	non-null	InputConnection,	and	they	are	really	a	first-class	editor	that	the	user	would	normally	start	typing	on	when	the	go	into	a	window	containing	your	view.	The	default	implementation	always	returns	false.	This	does	not
mean	that	its	onCreateInputConnection(android.view.inputmethod.EditorInfo)	will	not	be	called	or	the	user	can	not	otherwise	perform	edits	on	your	view;	it	is	just	a	hint	to	the	system	that	this	is	not	the	primary	purpose	of	this	view.	Returns	boolean	Returns	true	if	this	view	is	a	text	editor,	else	false.	public	void	onChildViewAdded	(View	parent,	View
child)	This	method	is	deprecated.	WebView	no	longer	needs	to	implement	ViewGroup.OnHierarchyChangeListener.	This	method	does	nothing	now.	Called	when	a	new	child	is	added	to	a	parent	view.	Parameters	parent	View:	the	view	in	which	a	child	was	added	child	View:	the	new	child	view	added	in	the	hierarchy	public	void	onChildViewRemoved
(View	p,	View	child)	This	method	is	deprecated.	WebView	no	longer	needs	to	implement	ViewGroup.OnHierarchyChangeListener.	This	method	does	nothing	now.	Called	when	a	child	is	removed	from	a	parent	view.	Parameters	p	View:	the	view	from	which	the	child	was	removed	child	View:	the	child	removed	from	the	hierarchy	public	InputConnection
onCreateInputConnection	(EditorInfo	outAttrs)	Creates	a	new	InputConnection	for	an	InputMethod	to	interact	with	the	WebView.	This	is	similar	to	View#onCreateInputConnection	but	note	that	WebView	calls	InputConnection	methods	on	a	thread	other	than	the	UI	thread.	If	these	methods	are	overridden,	then	the	overriding	methods	should	respect
thread	restrictions	when	calling	View	methods	or	accessing	data.	Parameters	outAttrs	EditorInfo:	Fill	in	with	attribute	information	about	the	connection.	public	void	onCreateVirtualViewTranslationRequests	(long[]	virtualIds,	int[]	supportedFormats,	Consumer	requestsCollector)	Collects	ViewTranslationRequests	which	represents	the	content	to	be
translated	for	the	virtual	views	in	the	host	view.	This	is	called	if	this	view	returned	a	virtual	view	structure	from	onProvideContentCaptureStructure(ViewStructure,	int)	and	the	system	determined	that	those	virtual	views	were	relevant	for	translation.	The	default	implementation	does	nothing.	Parameters	virtualIds	long:	This	value	cannot	be	null.
supportedFormats	int:	This	value	cannot	be	null.	Value	is	TranslationSpec.DATA_FORMAT_TEXT	requestsCollector	Consumer:	This	value	cannot	be	null.	Returns	void	This	value	may	be	null.	public	boolean	onDragEvent	(DragEvent	event)	Handles	drag	events	sent	by	the	system	following	a	call	to	startDragAndDrop().	The	system	calls	this	method	and
passes	a	DragEvent	object	in	response	to	drag	and	drop	events.	This	method	can	then	call	DragEvent#getAction()	to	determine	the	state	of	the	drag	and	drop	operation.	The	default	implementation	returns	false	unless	an	OnReceiveContentListener	has	been	set	for	this	view	(see	setOnReceiveContentListener(String[],	OnReceiveContentListener)),	in
which	case	the	default	implementation	does	the	following:	Parameters	event	DragEvent:	The	DragEvent	object	sent	by	the	system.	The	DragEvent#getAction()	method	returns	an	action	type	constant	that	indicates	the	type	of	drag	event	represented	by	this	object.	Returns	boolean	true	if	the	method	successfully	handled	the	drag	event,	otherwise
false.	The	method	must	return	true	in	response	to	an	ACTION_DRAG_STARTED	action	type	to	continue	to	receive	drag	events	for	the	current	drag	and	drop	operation.	The	method	should	return	true	in	response	to	an	ACTION_DROP	action	type	if	the	dropped	data	was	consumed	(at	least	partially);	false,	if	none	of	the	data	was	consumed.	For	all	other
events,	the	return	value	is	false.	public	boolean	onGenericMotionEvent	(MotionEvent	event)	Implement	this	method	to	handle	generic	motion	events.	Generic	motion	events	describe	joystick	movements,	mouse	hovers,	track	pad	touches,	scroll	wheel	movements	and	other	input	events.	The	source	of	the	motion	event	specifies	the	class	of	input	that
was	received.	Implementations	of	this	method	must	examine	the	bits	in	the	source	before	processing	the	event.	The	following	code	example	shows	how	this	is	done.	Generic	motion	events	with	source	class	InputDevice#SOURCE_CLASS_POINTER	are	delivered	to	the	view	under	the	pointer.	All	other	generic	motion	events	are	delivered	to	the	focused
view.	public	boolean	onGenericMotionEvent(MotionEvent	event)	{	if	(event.isFromSource(InputDevice.SOURCE_CLASS_JOYSTICK))	{	if	(event.getAction()	==	MotionEvent.ACTION_MOVE)	{	//	process	the	joystick	movement...	return	true;	}	}	if	(event.isFromSource(InputDevice.SOURCE_CLASS_POINTER))	{	switch	(event.getAction())	{	case
MotionEvent.ACTION_HOVER_MOVE:	//	process	the	mouse	hover	movement...	return	true;	case	MotionEvent.ACTION_SCROLL:	//	process	the	scroll	wheel	movement...	return	true;	}	}	return	super.onGenericMotionEvent(event);	}	Parameters	event	MotionEvent:	The	generic	motion	event	being	processed.	Returns	boolean	True	if	the	event	was
handled,	false	otherwise.	public	void	onGlobalFocusChanged	(View	oldFocus,	View	newFocus)	This	method	is	deprecated.	WebView	should	not	have	implemented	ViewTreeObserver.OnGlobalFocusChangeListener.	This	method	does	nothing	now.	Callback	method	to	be	invoked	when	the	focus	changes	in	the	view	tree.	When	the	view	tree	transitions
from	touch	mode	to	non-touch	mode,	oldFocus	is	null.	When	the	view	tree	transitions	from	non-touch	mode	to	touch	mode,	newFocus	is	null.	When	focus	changes	in	non-touch	mode	(without	transition	from	or	to	touch	mode)	either	oldFocus	or	newFocus	can	be	null.	Parameters	oldFocus	View:	The	previously	focused	view,	if	any.	newFocus	View:	The
newly	focused	View,	if	any.	public	boolean	onHoverEvent	(MotionEvent	event)	Implement	this	method	to	handle	hover	events.	This	method	is	called	whenever	a	pointer	is	hovering	into,	over,	or	out	of	the	bounds	of	a	view	and	the	view	is	not	currently	being	touched.	Hover	events	are	represented	as	pointer	events	with	action
MotionEvent#ACTION_HOVER_ENTER,	MotionEvent#ACTION_HOVER_MOVE,	or	MotionEvent#ACTION_HOVER_EXIT.	The	view	receives	a	hover	event	with	action	MotionEvent#ACTION_HOVER_ENTER	when	the	pointer	enters	the	bounds	of	the	view.	The	view	receives	a	hover	event	with	action	MotionEvent#ACTION_HOVER_MOVE	when	the
pointer	has	already	entered	the	bounds	of	the	view	and	has	moved.	The	view	receives	a	hover	event	with	action	MotionEvent#ACTION_HOVER_EXIT	when	the	pointer	has	exited	the	bounds	of	the	view	or	when	the	pointer	is	about	to	go	down	due	to	a	button	click,	tap,	or	similar	user	action	that	causes	the	view	to	be	touched.	The	view	should
implement	this	method	to	return	true	to	indicate	that	it	is	handling	the	hover	event,	such	as	by	changing	its	drawable	state.	The	default	implementation	calls	setHovered(boolean)	to	update	the	hovered	state	of	the	view	when	a	hover	enter	or	hover	exit	event	is	received,	if	the	view	is	enabled	and	is	clickable.	The	default	implementation	also	sends
hover	accessibility	events.	Parameters	event	MotionEvent:	The	motion	event	that	describes	the	hover.	Returns	boolean	True	if	the	view	handled	the	hover	event.	public	boolean	onKeyDown	(int	keyCode,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyDown():	perform	press	of	the	view	when	KeyEvent#KEYCODE_DPAD_CENTER
or	KeyEvent#KEYCODE_ENTER	is	released,	if	the	view	is	enabled	and	clickable.	Key	presses	in	software	keyboards	will	generally	NOT	trigger	this	listener,	although	some	may	elect	to	do	so	in	some	situations.	Do	not	rely	on	this	to	catch	software	key	presses.	Parameters	keyCode	int:	a	key	code	that	represents	the	button	pressed,	from	KeyEvent
event	KeyEvent:	the	KeyEvent	object	that	defines	the	button	action	Returns	boolean	If	you	handled	the	event,	return	true.	If	you	want	to	allow	the	event	to	be	handled	by	the	next	receiver,	return	false.	public	boolean	onKeyMultiple	(int	keyCode,	int	repeatCount,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyMultiple():	always
returns	false	(doesn't	handle	the	event).	Key	presses	in	software	keyboards	will	generally	NOT	trigger	this	listener,	although	some	may	elect	to	do	so	in	some	situations.	Do	not	rely	on	this	to	catch	software	key	presses.	Parameters	keyCode	int:	A	key	code	that	represents	the	button	pressed,	from	KeyEvent.	repeatCount	int:	The	number	of	times	the
action	was	made.	event	KeyEvent:	The	KeyEvent	object	that	defines	the	button	action.	Returns	boolean	If	you	handled	the	event,	return	true.	If	you	want	to	allow	the	event	to	be	handled	by	the	next	receiver,	return	false.	public	boolean	onKeyUp	(int	keyCode,	KeyEvent	event)	Default	implementation	of	KeyEvent.Callback.onKeyUp():	perform	clicking
of	the	view	when	KeyEvent#KEYCODE_DPAD_CENTER,	KeyEvent#KEYCODE_ENTER	or	KeyEvent#KEYCODE_SPACE	is	released.	Key	presses	in	software	keyboards	will	generally	NOT	trigger	this	listener,	although	some	may	elect	to	do	so	in	some	situations.	Do	not	rely	on	this	to	catch	software	key	presses.	Parameters	keyCode	int:	A	key	code	that
represents	the	button	pressed,	from	KeyEvent.	event	KeyEvent:	The	KeyEvent	object	that	defines	the	button	action.	Returns	boolean	If	you	handled	the	event,	return	true.	If	you	want	to	allow	the	event	to	be	handled	by	the	next	receiver,	return	false.	public	void	onPause	()	Does	a	best-effort	attempt	to	pause	any	processing	that	can	be	paused	safely,
such	as	animations	and	geolocation.	Note	that	this	call	does	not	pause	JavaScript.	To	pause	JavaScript	globally,	use	pauseTimers().	To	resume	WebView,	call	onResume().	public	void	onProvideAutofillVirtualStructure	(ViewStructure	structure,	int	flags)	Populates	a	ViewStructure	containing	virtual	children	to	fullfil	an	autofill	request.	This	method
should	be	used	when	the	view	manages	a	virtual	structure	under	this	view.	For	example,	a	view	that	draws	input	fields	using	draw(android.graphics.Canvas).	When	implementing	this	method,	subclasses	must	follow	the	rules	below:	Add	virtual	children	by	calling	the	ViewStructure#newChild(int)	or	ViewStructure#asyncNewChild(int)	methods,	where
the	id	is	an	unique	id	identifying	the	children	in	the	virtual	structure.	The	children	hierarchy	can	have	multiple	levels	if	necessary,	but	ideally	it	should	exclude	intermediate	levels	that	are	irrelevant	for	autofill;	that	would	improve	the	autofill	performance.	Also	implement	autofill(android.util.SparseArray)	to	autofill	the	virtual	children.	Set	the	autofill
properties	of	the	child	structure	as	defined	by	onProvideAutofillStructure(android.view.ViewStructure,	int),	using	ViewStructure#setAutofillId(AutofillId,	int)	to	set	its	autofill	id.	Call	AutofillManager.notifyViewEntered(View,	int,	Rect)	and/or	AutofillManager.notifyViewExited(View,	int)	when	the	focused	virtual	child	changed.	Override
isVisibleToUserForAutofill(int)	to	allow	the	platform	to	query	whether	a	given	virtual	view	is	visible	to	the	user	in	order	to	support	triggering	save	when	all	views	of	interest	go	away.	Call	AutofillManager.notifyValueChanged(View,	int,	AutofillValue)	when	the	value	of	a	virtual	child	changed.	Call	AutofillManager.notifyViewVisibilityChanged(View,	int,
boolean)	when	the	visibility	of	a	virtual	child	changed.	Call	AutofillManager.notifyViewClicked(View,	int)	when	a	virtual	child	is	clicked.	Call	AutofillManager#commit()	when	the	autofill	context	of	the	view	structure	changed	and	the	current	context	should	be	committed	(for	example,	when	the	user	tapped	a	SUBMIT	button	in	an	HTML	page).	Call
AutofillManager#cancel()	when	the	autofill	context	of	the	view	structure	changed	and	the	current	context	should	be	canceled	(for	example,	when	the	user	tapped	a	CANCEL	button	in	an	HTML	page).	Provide	ways	for	users	to	manually	request	autofill	by	calling	AutofillManager#requestAutofill(View,	int,	Rect).	The	left	and	top	values	set	in
ViewStructure#setDimens(int,	int,	int,	int,	int,	int)	must	be	relative	to	the	next	ViewGroup#isImportantForAutofill()	predecessor	view	included	in	the	structure.	Views	with	virtual	children	support	the	Autofill	Framework	mainly	by:	Providing	the	metadata	defining	what	the	virtual	children	mean	and	how	they	can	be	autofilled.	Implementing	the
methods	that	autofill	the	virtual	children.	This	method	is	responsible	for	the	former;	autofill(android.util.SparseArray)	is	responsible	for	the	latter.	The	ViewStructure	traditionally	represents	a	View,	while	for	web	pages	it	represent	HTML	nodes.	Hence,	it's	necessary	to	"map"	the	HTML	properties	in	a	way	that	is	understood	by	the	AutofillService
implementations:	If	the	WebView	implementation	can	determine	that	the	value	of	a	field	was	set	statically	(for	example,	not	through	Javascript),	it	should	also	call	structure.setDataIsSensitive(false).	For	example,	an	HTML	form	with	2	fields	for	username	and	password:	Username:	Password:	Would	map	to:	int	index	=	structure.addChildCount(2);
ViewStructure	username	=	structure.newChild(index);	username.setAutofillId(structure.getAutofillId(),	1);	//	id	1	-	first	child	username.setAutofillHints("username");	username.setHtmlInfo(username.newHtmlInfoBuilder("input")	.addAttribute("type",	"text")	.addAttribute("name",	"username")	.addAttribute("label",	"Username:")	.build());
username.setHint("Email	or	username");	username.setAutofillType(View.AUTOFILL_TYPE_TEXT);	username.setAutofillValue(AutofillValue.forText("Type	your	username"));	//	Value	of	the	field	is	not	sensitive	because	it	was	created	statically	and	not	changed.	username.setDataIsSensitive(false);	ViewStructure	password	=	structure.newChild(index	+
1);	username.setAutofillId(structure,	2);	//	id	2	-	second	child	password.setAutofillHints("current-password");	password.setHtmlInfo(password.newHtmlInfoBuilder("input")	.addAttribute("type",	"password")	.addAttribute("name",	"password")	.addAttribute("label",	"Password:")	.build());	password.setHint("Password");
password.setAutofillType(View.AUTOFILL_TYPE_TEXT);	Parameters	structure	ViewStructure:	fill	in	with	virtual	children	data	for	autofill	purposes.	flags	int:	optional	flags.	public	void	onProvideContentCaptureStructure	(ViewStructure	structure,	int	flags)	Populates	a	ViewStructure	for	content	capture.	This	method	is	called	after	a	view	that	is	eligible
for	content	capture	(for	example,	if	it	isImportantForContentCapture(),	an	intelligence	service	is	enabled	for	the	user,	and	the	activity	rendering	the	view	is	enabled	for	content	capture)	is	laid	out	and	is	visible.	The	populated	structure	is	then	passed	to	the	service	through	ContentCaptureSession#notifyViewAppeared(ViewStructure).	The	default
implementation	of	this	method	sets	the	most	relevant	properties	based	on	related	View	methods,	and	views	in	the	standard	Android	widgets	library	also	override	it	to	set	their	relevant	properties.	Therefore,	if	overriding	this	method,	it	is	recommended	to	call	super.onProvideContentCaptureStructure().	Note:	views	that	manage	a	virtual	structure
under	this	view	must	populate	just	the	node	representing	this	view	and	return	right	away,	then	asynchronously	report	(not	necessarily	in	the	UI	thread)	when	the	children	nodes	appear,	disappear	or	have	their	text	changed	by	calling	ContentCaptureSession#notifyViewAppeared(ViewStructure),
ContentCaptureSession#notifyViewDisappeared(AutofillId),	and	ContentCaptureSession#notifyViewTextChanged(AutofillId,	CharSequence)	respectively.	The	structure	for	a	child	must	be	created	using	ContentCaptureSession#newVirtualViewStructure(AutofillId,	long),	and	the	autofillId	for	a	child	can	be	obtained	either	through
childStructure.getAutofillId()	or	ContentCaptureSession#newAutofillId(AutofillId,	long).	When	the	virtual	view	hierarchy	represents	a	web	page,	you	should	also:	Note:	the	following	methods	of	the	structure	will	be	ignored:	Parameters	structure	ViewStructure:	This	value	cannot	be	null.	flags	int	public	void	onProvideVirtualStructure	(ViewStructure
structure)	Called	when	assist	structure	is	being	retrieved	from	a	view	as	part	of	Activity.onProvideAssistData	to	generate	additional	virtual	structure	under	this	view.	The	default	implementation	uses	getAccessibilityNodeProvider()	to	try	to	generate	this	from	the	view's	virtual	accessibility	nodes,	if	any.	You	can	override	this	for	a	more	optimal
implementation	providing	this	data.	Parameters	structure	ViewStructure	public	boolean	onTouchEvent	(MotionEvent	event)	Implement	this	method	to	handle	touch	screen	motion	events.	If	this	method	is	used	to	detect	click	actions,	it	is	recommended	that	the	actions	be	performed	by	implementing	and	calling	performClick().	This	will	ensure
consistent	system	behavior,	including:	obeying	click	sound	preferences	dispatching	OnClickListener	calls	handling	ACTION_CLICK	when	accessibility	features	are	enabled	Parameters	event	MotionEvent:	The	motion	event.	Returns	boolean	True	if	the	event	was	handled,	false	otherwise.	public	boolean	onTrackballEvent	(MotionEvent	event)	Implement
this	method	to	handle	trackball	motion	events.	The	relative	movement	of	the	trackball	since	the	last	event	can	be	retrieve	with	MotionEvent.getX()	and	MotionEvent.getY().	These	are	normalized	so	that	a	movement	of	1	corresponds	to	the	user	pressing	one	DPAD	key	(so	they	will	often	be	fractional	values,	representing	the	more	fine-grained
movement	information	available	from	a	trackball).	Parameters	event	MotionEvent:	The	motion	event.	Returns	boolean	True	if	the	event	was	handled,	false	otherwise.	public	void	onWindowFocusChanged	(boolean	hasWindowFocus)	Called	when	the	window	containing	this	view	gains	or	loses	focus.	Note	that	this	is	separate	from	view	focus:	to	receive
key	events,	both	your	view	and	its	window	must	have	focus.	If	a	window	is	displayed	on	top	of	yours	that	takes	input	focus,	then	your	own	window	will	lose	focus	but	the	view	focus	will	remain	unchanged.	Parameters	hasWindowFocus	boolean:	True	if	the	window	containing	this	view	now	has	focus,	false	otherwise.	Added	in	API	level	1	Deprecated	in
API	level	23	public	boolean	overlayHorizontalScrollbar	()	This	method	was	deprecated	in	API	level	23.	This	method	is	now	obsolete.	Gets	whether	horizontal	scrollbar	has	overlay	style.	Added	in	API	level	1	Deprecated	in	API	level	23	public	boolean	overlayVerticalScrollbar	()	This	method	was	deprecated	in	API	level	23.	This	method	is	now	obsolete.
Gets	whether	vertical	scrollbar	has	overlay	style.	public	boolean	pageDown	(boolean	bottom)	Scrolls	the	contents	of	this	WebView	down	by	half	the	page	size.	Parameters	bottom	boolean:	true	to	jump	to	bottom	of	page	Returns	boolean	true	if	the	page	was	scrolled	public	boolean	pageUp	(boolean	top)	Scrolls	the	contents	of	this	WebView	up	by	half
the	view	size.	Parameters	top	boolean:	true	to	jump	to	the	top	of	the	page	Returns	boolean	true	if	the	page	was	scrolled	public	void	pauseTimers	()	Pauses	all	layout,	parsing,	and	JavaScript	timers	for	all	WebViews.	This	is	a	global	requests,	not	restricted	to	just	this	WebView.	This	can	be	useful	if	the	application	has	been	paused.	public	boolean
performLongClick	()	Calls	this	view's	OnLongClickListener,	if	it	is	defined.	Invokes	the	context	menu	if	the	OnLongClickListener	did	not	consume	the	event.	Returns	boolean	true	if	one	of	the	above	receivers	consumed	the	event,	false	otherwise	public	void	postUrl	(String	url,	byte[]	postData)	Loads	the	URL	with	postData	using	"POST"	method	into
this	WebView.	If	url	is	not	a	network	URL,	it	will	be	loaded	with	loadUrl(java.lang.String)	instead,	ignoring	the	postData	param.	Parameters	url	String:	the	URL	of	the	resource	to	load	This	value	cannot	be	null.	postData	byte:	the	data	will	be	passed	to	"POST"	request,	which	must	be	be	"application/x-www-form-urlencoded"	encoded.	This	value	cannot
be	null.	public	void	postVisualStateCallback	(long	requestId,	WebView.VisualStateCallback	callback)	Posts	a	VisualStateCallback,	which	will	be	called	when	the	current	state	of	the	WebView	is	ready	to	be	drawn.	Because	updates	to	the	DOM	are	processed	asynchronously,	updates	to	the	DOM	may	not	immediately	be	reflected	visually	by	subsequent
WebView#onDraw	invocations.	The	VisualStateCallback	provides	a	mechanism	to	notify	the	caller	when	the	contents	of	the	DOM	at	the	current	time	are	ready	to	be	drawn	the	next	time	the	WebView	draws.	The	next	draw	after	the	callback	completes	is	guaranteed	to	reflect	all	the	updates	to	the	DOM	up	to	the	point	at	which	the	VisualStateCallback
was	posted,	but	it	may	also	contain	updates	applied	after	the	callback	was	posted.	The	state	of	the	DOM	covered	by	this	API	includes	the	following:	primitive	HTML	elements	(div,	img,	span,	etc..)	images	CSS	animations	WebGL	canvas	It	does	not	include	the	state	of:	To	guarantee	that	the	WebView	will	successfully	render	the	first	frame	after	the
VisualStateCallback#onComplete	method	has	been	called	a	set	of	conditions	must	be	met:	When	using	this	API	it	is	also	recommended	to	enable	pre-rasterization	if	the	WebView	is	off	screen	to	avoid	flickering.	See	WebSettings#setOffscreenPreRaster	for	more	details	and	do	consider	its	caveats.	Parameters	requestId	long:	An	id	that	will	be	returned
in	the	callback	to	allow	callers	to	match	requests	with	callbacks.	callback	WebView.VisualStateCallback:	The	callback	to	be	invoked.	This	value	cannot	be	null.	public	void	postWebMessage	(WebMessage	message,	Uri	targetOrigin)	Post	a	message	to	main	frame.	The	embedded	application	can	restrict	the	messages	to	a	certain	target	origin.	See
HTML5	spec	for	how	target	origin	can	be	used.	A	target	origin	can	be	set	as	a	wildcard	("*").	However	this	is	not	recommended.	See	the	page	above	for	security	issues.	Content	loaded	via	loadData(java.lang.String,	java.lang.String,	java.lang.String)	will	not	have	a	valid	origin,	and	thus	cannot	be	sent	messages	securely.	If	you	need	to	send	messages
using	this	function,	you	should	use	loadDataWithBaseURL(java.lang.String,	java.lang.String,	java.lang.String,	java.lang.String,	java.lang.String)	with	a	valid	HTTP	or	HTTPS	baseUrl	to	define	a	valid	origin	that	can	be	used	for	messaging.	Parameters	message	WebMessage:	the	WebMessage	This	value	cannot	be	null.	targetOrigin	Uri:	the	target	origin.
This	value	cannot	be	null.	public	void	reload	()	Reloads	the	current	URL.	public	void	removeJavascriptInterface	(String	name)	Removes	a	previously	injected	Java	object	from	this	WebView.	Note	that	the	removal	will	not	be	reflected	in	JavaScript	until	the	page	is	next	(re)loaded.	See	addJavascriptInterface(Object,	String).	Parameters	name	String:	the
name	used	to	expose	the	object	in	JavaScript	This	value	cannot	be	null.	public	boolean	requestChildRectangleOnScreen	(View	child,	Rect	rect,	boolean	immediate)	Called	when	a	child	of	this	group	wants	a	particular	rectangle	to	be	positioned	onto	the	screen.	ViewGroups	overriding	this	can	trust	that:	child	will	be	a	direct	child	of	this	group	rectangle
will	be	in	the	child's	content	coordinates	ViewGroups	overriding	this	should	uphold	the	contract:	nothing	will	change	if	the	rectangle	is	already	visible	the	view	port	will	be	scrolled	only	just	enough	to	make	the	rectangle	visible	Parameters	child	View:	The	direct	child	making	the	request.	This	value	cannot	be	null.	rect	Rect:	The	rectangle	in	the	child's
coordinates	the	child	wishes	to	be	on	the	screen.	immediate	boolean:	True	to	forbid	animated	or	delayed	scrolling,	false	otherwise	Returns	boolean	Whether	the	group	scrolled	to	handle	the	operation	public	boolean	requestFocus	(int	direction,	Rect	previouslyFocusedRect)	Call	this	to	try	to	give	focus	to	a	specific	view	or	to	one	of	its	descendants	and
give	it	hints	about	the	direction	and	a	specific	rectangle	that	the	focus	is	coming	from.	The	rectangle	can	help	give	larger	views	a	finer	grained	hint	about	where	focus	is	coming	from,	and	therefore,	where	to	show	selection,	or	forward	focus	change	internally.	A	view	will	not	actually	take	focus	if	it	is	not	focusable	(isFocusable()	returns	false),	or	if	it	is
focusable	and	it	is	not	focusable	in	touch	mode	(isFocusableInTouchMode())	while	the	device	is	in	touch	mode.	A	View	will	not	take	focus	if	it	is	not	visible.	A	View	will	not	take	focus	if	one	of	its	parents	has	ViewGroup.getDescendantFocusability()	equal	to	ViewGroup#FOCUS_BLOCK_DESCENDANTS.	See	also	focusSearch(int),	which	is	what	you	call
to	say	that	you	have	focus,	and	you	want	your	parent	to	look	for	the	next	one.	You	may	wish	to	override	this	method	if	your	custom	View	has	an	internal	View	that	it	wishes	to	forward	the	request	to.	Looks	for	a	view	to	give	focus	to	respecting	the	setting	specified	by	getDescendantFocusability().	Uses	onRequestFocusInDescendants(int,
android.graphics.Rect)	to	find	focus	within	the	children	of	this	group	when	appropriate.	Parameters	direction	int:	One	of	FOCUS_UP,	FOCUS_DOWN,	FOCUS_LEFT,	and	FOCUS_RIGHT	previouslyFocusedRect	Rect:	The	rectangle	(in	this	View's	coordinate	system)	to	give	a	finer	grained	hint	about	where	focus	is	coming	from.	May	be	null	if	there	is	no
hint.	Returns	boolean	Whether	this	view	or	one	of	its	descendants	actually	took	focus.	public	void	requestFocusNodeHref	(Message	hrefMsg)	Requests	the	anchor	or	image	element	URL	at	the	last	tapped	point.	If	hrefMsg	is	null,	this	method	returns	immediately	and	does	not	dispatch	hrefMsg	to	its	target.	If	the	tapped	point	hits	an	image,	an	anchor,
or	an	image	in	an	anchor,	the	message	associates	strings	in	named	keys	in	its	data.	The	value	paired	with	the	key	may	be	an	empty	string.	Parameters	hrefMsg	Message:	the	message	to	be	dispatched	with	the	result	of	the	request.	The	message	data	contains	three	keys.	"url"	returns	the	anchor's	href	attribute.	"title"	returns	the	anchor's	text.	"src"
returns	the	image's	src	attribute.	This	value	may	be	null.	public	void	requestImageRef	(Message	msg)	Requests	the	URL	of	the	image	last	touched	by	the	user.	msg	will	be	sent	to	its	target	with	a	String	representing	the	URL	as	its	object.	Parameters	msg	Message:	the	message	to	be	dispatched	with	the	result	of	the	request	as	the	data	member	with
"url"	as	key.	The	result	can	be	null.	public	WebBackForwardList	restoreState	(Bundle	inState)	Restores	the	state	of	this	WebView	from	the	given	Bundle.	This	method	is	intended	for	use	in	Activity.onRestoreInstanceState(Bundle)	and	should	be	called	to	restore	the	state	of	this	WebView.	If	it	is	called	after	this	WebView	has	had	a	chance	to	build	state
(load	pages,	create	a	back/forward	list,	etc.)	there	may	be	undesirable	side-effects.	Please	note	that	this	method	no	longer	restores	the	display	data	for	this	WebView.	Parameters	inState	Bundle:	the	incoming	Bundle	of	state	This	value	cannot	be	null.	public	void	resumeTimers	()	Resumes	all	layout,	parsing,	and	JavaScript	timers	for	all	WebViews.	This
will	resume	dispatching	all	timers.	Added	in	API	level	1	Deprecated	in	API	level	18	public	void	savePassword	(String	host,	String	username,	String	password)	This	method	was	deprecated	in	API	level	18.	Saving	passwords	in	WebView	will	not	be	supported	in	future	versions.	Sets	a	username	and	password	pair	for	the	specified	host.	This	data	is	used
by	the	WebView	to	autocomplete	username	and	password	fields	in	web	forms.	Note	that	this	is	unrelated	to	the	credentials	used	for	HTTP	authentication.	Parameters	host	String:	the	host	that	required	the	credentials	username	String:	the	username	for	the	given	host	password	String:	the	password	for	the	given	host	public	void	saveWebArchive
(String	filename)	Saves	the	current	view	as	a	web	archive.	Parameters	filename	String:	the	filename	where	the	archive	should	be	placed	This	value	cannot	be	null.	public	void	saveWebArchive	(String	basename,	boolean	autoname,	ValueCallback	callback)	Saves	the	current	view	as	a	web	archive.	Parameters	basename	String:	the	filename	where	the
archive	should	be	placed	This	value	cannot	be	null.	autoname	boolean:	if	false,	takes	basename	to	be	a	file.	If	true,	basename	is	assumed	to	be	a	directory	in	which	a	filename	will	be	chosen	according	to	the	URL	of	the	current	page.	callback	ValueCallback:	called	after	the	web	archive	has	been	saved.	The	parameter	for	onReceiveValue	will	either	be
the	filename	under	which	the	file	was	saved,	or	null	if	saving	the	file	failed.	public	void	setBackgroundColor	(int	color)	Sets	the	background	color	for	this	view.	Parameters	color	int:	the	color	of	the	background	Added	in	API	level	1	Deprecated	in	API	level	17	public	void	setCertificate	(SslCertificate	certificate)	This	method	was	deprecated	in	API	level
17.	Calling	this	function	has	no	useful	effect,	and	will	be	ignored	in	future	releases.	Sets	the	SSL	certificate	for	the	main	top-level	page.	Parameters	certificate	SslCertificate	public	static	void	setDataDirectorySuffix	(String	suffix)	Define	the	directory	used	to	store	WebView	data	for	the	current	process.	The	provided	suffix	will	be	used	when
constructing	data	and	cache	directory	paths.	If	this	API	is	not	called,	no	suffix	will	be	used.	Each	directory	can	be	used	by	only	one	process	in	the	application.	If	more	than	one	process	in	an	app	wishes	to	use	WebView,	only	one	process	can	use	the	default	directory,	and	other	processes	must	call	this	API	to	define	a	unique	suffix.	This	means	that
different	processes	in	the	same	application	cannot	directly	share	WebView-related	data,	since	the	data	directories	must	be	distinct.	Applications	that	use	this	API	may	have	to	explicitly	pass	data	between	processes.	For	example,	login	cookies	may	have	to	be	copied	from	one	process's	cookie	jar	to	the	other	using	CookieManager	if	both	processes'
WebViews	are	intended	to	be	logged	in.	Most	applications	should	simply	ensure	that	all	components	of	the	app	that	rely	on	WebView	are	in	the	same	process,	to	avoid	needing	multiple	data	directories.	The	disableWebView()	method	can	be	used	to	ensure	that	the	other	processes	do	not	use	WebView	by	accident	in	this	case.	This	API	must	be	called
before	any	instances	of	WebView	are	created	in	this	process	and	before	any	other	methods	in	the	android.webkit	package	are	called	by	this	process.	Parameters	suffix	String:	The	directory	name	suffix	to	be	used	for	the	current	process.	Must	not	contain	a	path	separator.	This	value	cannot	be	null.	public	void	setDownloadListener	(DownloadListener
listener)	Registers	the	interface	to	be	used	when	content	can	not	be	handled	by	the	rendering	engine,	and	should	be	downloaded	instead.	This	will	replace	the	current	handler.	Parameters	listener	DownloadListener:	an	implementation	of	DownloadListener	This	value	may	be	null.	public	void	setFindListener	(WebView.FindListener	listener)	Registers



the	listener	to	be	notified	as	find-on-page	operations	progress.	This	will	replace	the	current	listener.	Parameters	listener	WebView.FindListener:	an	implementation	of	FindListener	This	value	may	be	null.	Added	in	API	level	1	Deprecated	in	API	level	23	public	void	setHorizontalScrollbarOverlay	(boolean	overlay)	This	method	was	deprecated	in	API
level	23.	This	method	has	no	effect.	Specifies	whether	the	horizontal	scrollbar	has	overlay	style.	Parameters	overlay	boolean:	true	if	horizontal	scrollbar	should	have	overlay	style	Added	in	API	level	1	Deprecated	in	API	level	26	public	void	setHttpAuthUsernamePassword	(String	host,	String	realm,	String	username,	String	password)	This	method	was
deprecated	in	API	level	26.	Use	WebViewDatabase#setHttpAuthUsernamePassword	instead	Stores	HTTP	authentication	credentials	for	a	given	host	and	realm	to	the	WebViewDatabase	instance.	Parameters	host	String:	the	host	to	which	the	credentials	apply	realm	String:	the	realm	to	which	the	credentials	apply	username	String:	the	username
password	String:	the	password	public	void	setInitialScale	(int	scaleInPercent)	Sets	the	initial	scale	for	this	WebView.	0	means	default.	The	behavior	for	the	default	scale	depends	on	the	state	of	WebSettings#getUseWideViewPort()	and	WebSettings#getLoadWithOverviewMode().	If	the	content	fits	into	the	WebView	control	by	width,	then	the	zoom	is
set	to	100%.	For	wide	content,	the	behavior	depends	on	the	state	of	WebSettings#getLoadWithOverviewMode().	If	its	value	is	true,	the	content	will	be	zoomed	out	to	be	fit	by	width	into	the	WebView	control,	otherwise	not.	If	initial	scale	is	greater	than	0,	WebView	starts	with	this	value	as	initial	scale.	Please	note	that	unlike	the	scale	properties	in	the
viewport	meta	tag,	this	method	doesn't	take	the	screen	density	into	account.	Parameters	scaleInPercent	int:	the	initial	scale	in	percent	public	void	setLayoutParams	(ViewGroup.LayoutParams	params)	Set	the	layout	parameters	associated	with	this	view.	These	supply	parameters	to	the	parent	of	this	view	specifying	how	it	should	be	arranged.	There
are	many	subclasses	of	ViewGroup.LayoutParams,	and	these	correspond	to	the	different	subclasses	of	ViewGroup	that	are	responsible	for	arranging	their	children.	Parameters	params	ViewGroup.LayoutParams:	The	layout	parameters	for	this	view,	cannot	be	null	Added	in	API	level	1	Deprecated	in	API	level	17	public	void
setMapTrackballToArrowKeys	(boolean	setMap)	This	method	was	deprecated	in	API	level	17.	Only	the	default	case,	true,	will	be	supported	in	a	future	version.	Parameters	setMap	boolean	public	void	setNetworkAvailable	(boolean	networkUp)	Informs	WebView	of	the	network	state.	This	is	used	to	set	the	JavaScript	property	window.navigator.isOnline
and	generates	the	online/offline	event	as	specified	in	HTML5,	sec.	5.7.7	Parameters	networkUp	boolean:	a	boolean	indicating	if	network	is	available	public	void	setOverScrollMode	(int	mode)	Set	the	over-scroll	mode	for	this	view.	Valid	over-scroll	modes	are	OVER_SCROLL_ALWAYS,	OVER_SCROLL_IF_CONTENT_SCROLLS	(allow	over-scrolling	only
if	the	view	content	is	larger	than	the	container),	or	OVER_SCROLL_NEVER.	Setting	the	over-scroll	mode	of	a	view	will	have	an	effect	only	if	the	view	is	capable	of	scrolling.	Parameters	mode	int:	The	new	over-scroll	mode	for	this	view.	Added	in	API	level	1	Deprecated	in	API	level	15	public	void	setPictureListener	(WebView.PictureListener	listener)
This	method	was	deprecated	in	API	level	15.	This	method	is	now	obsolete.	Sets	the	Picture	listener.	This	is	an	interface	used	to	receive	notifications	of	a	new	Picture.	Parameters	listener	WebView.PictureListener:	an	implementation	of	WebView.PictureListener	public	void	setRendererPriorityPolicy	(int	rendererRequestedPriority,	boolean
waivedWhenNotVisible)	Set	the	renderer	priority	policy	for	this	WebView.	The	priority	policy	will	be	used	to	determine	whether	an	out	of	process	renderer	should	be	considered	to	be	a	target	for	OOM	killing.	Because	a	renderer	can	be	associated	with	more	than	one	WebView,	the	final	priority	it	is	computed	as	the	maximum	of	any	attached
WebViews.	When	a	WebView	is	destroyed	it	will	cease	to	be	considerered	when	calculating	the	renderer	priority.	Once	no	WebViews	remain	associated	with	the	renderer,	the	priority	of	the	renderer	will	be	reduced	to	RENDERER_PRIORITY_WAIVED.	The	default	policy	is	to	set	the	priority	to	RENDERER_PRIORITY_IMPORTANT	regardless	of
visibility,	and	this	should	not	be	changed	unless	the	caller	also	handles	renderer	crashes	with	WebViewClient#onRenderProcessGone.	Any	other	setting	will	result	in	WebView	renderers	being	killed	by	the	system	more	aggressively	than	the	application.	public	static	void	setSafeBrowsingWhitelist	(List	hosts,	ValueCallback	callback)	Sets	the	list	of
hosts	(domain	names/IP	addresses)	that	are	exempt	from	SafeBrowsing	checks.	The	list	is	global	for	all	the	WebViews.	Each	rule	should	take	one	of	these:	Rule	Example	Matches	Subdomain	HOSTNAME	example.com	Yes	.HOSTNAME	.example.com	No	IPV4_LITERAL	192.168.1.1	No	IPV6_LITERAL_WITH_BRACKETS	[10:20:30:40:50:60:70:80]No	All
other	rules,	including	wildcards,	are	invalid.	The	correct	syntax	for	hosts	is	defined	by	RFC	3986.	Parameters	hosts	List:	the	list	of	hosts	This	value	cannot	be	null.	callback	ValueCallback:	will	be	called	with	true	if	hosts	are	successfully	added	to	the	allowlist.	It	will	be	called	with	false	if	any	hosts	are	malformed.	The	callback	will	be	run	on	the	UI
thread	This	value	may	be	null.	public	void	setScrollBarStyle	(int	style)	Specify	the	style	of	the	scrollbars.	The	scrollbars	can	be	overlaid	or	inset.	When	inset,	they	add	to	the	padding	of	the	view.	And	the	scrollbars	can	be	drawn	inside	the	padding	area	or	on	the	edge	of	the	view.	For	example,	if	a	view	has	a	background	drawable	and	you	want	to	draw
the	scrollbars	inside	the	padding	specified	by	the	drawable,	you	can	use	SCROLLBARS_INSIDE_OVERLAY	or	SCROLLBARS_INSIDE_INSET.	If	you	want	them	to	appear	at	the	edge	of	the	view,	ignoring	the	padding,	then	you	can	use	SCROLLBARS_OUTSIDE_OVERLAY	or	SCROLLBARS_OUTSIDE_INSET.	Added	in	API	level	1	Deprecated	in	API	level
23	public	void	setVerticalScrollbarOverlay	(boolean	overlay)	This	method	was	deprecated	in	API	level	23.	This	method	has	no	effect.	Specifies	whether	the	vertical	scrollbar	has	overlay	style.	Parameters	overlay	boolean:	true	if	vertical	scrollbar	should	have	overlay	style	public	void	setWebChromeClient	(WebChromeClient	client)	Sets	the	chrome
handler.	This	is	an	implementation	of	WebChromeClient	for	use	in	handling	JavaScript	dialogs,	favicons,	titles,	and	the	progress.	This	will	replace	the	current	handler.	Parameters	client	WebChromeClient:	an	implementation	of	WebChromeClient	This	value	may	be	null.	See	also:	public	static	void	setWebContentsDebuggingEnabled	(boolean	enabled)
Enables	debugging	of	web	contents	(HTML	/	CSS	/	JavaScript)	loaded	into	any	WebViews	of	this	application.	This	flag	can	be	enabled	in	order	to	facilitate	debugging	of	web	layouts	and	JavaScript	code	running	inside	WebViews.	Please	refer	to	WebView	documentation	for	the	debugging	guide.	The	default	is	false.	Parameters	enabled	boolean:	whether
to	enable	web	contents	debugging	public	void	setWebViewClient	(WebViewClient	client)	Sets	the	WebViewClient	that	will	receive	various	notifications	and	requests.	This	will	replace	the	current	handler.	Parameters	client	WebViewClient:	an	implementation	of	WebViewClient	This	value	cannot	be	null.	See	also:	public	void
setWebViewRenderProcessClient	(Executor	executor,	WebViewRenderProcessClient	webViewRenderProcessClient)	Sets	the	renderer	client	object	associated	with	this	WebView.	The	renderer	client	encapsulates	callbacks	relevant	to	WebView	renderer	state.	See	WebViewRenderProcessClient	for	details.	Although	many	WebView	instances	may	share
a	single	underlying	renderer,	and	renderers	may	live	either	in	the	application	process,	or	in	a	sandboxed	process	that	is	isolated	from	the	application	process,	instances	of	WebViewRenderProcessClient	are	set	per-WebView.	Callbacks	represent	renderer	events	from	the	perspective	of	this	WebView,	and	may	or	may	not	be	correlated	with	renderer
events	affecting	other	WebViews.	Parameters	executor	Executor:	the	Executor	on	which	WebViewRenderProcessClient	callbacks	will	execute.	This	value	cannot	be	null.	Callback	and	listener	events	are	dispatched	through	this	Executor,	providing	an	easy	way	to	control	which	thread	is	used.	To	dispatch	events	through	the	main	thread	of	your
application,	you	can	use	Context.getMainExecutor().	Otherwise,	provide	an	Executor	that	dispatches	to	an	appropriate	thread.	webViewRenderProcessClient	WebViewRenderProcessClient:	the	WebViewRenderProcessClient	object.	This	value	cannot	be	null.	public	boolean	shouldDelayChildPressedState	()	Return	true	if	the	pressed	state	should	be
delayed	for	children	or	descendants	of	this	ViewGroup.	Generally,	this	should	be	done	for	containers	that	can	scroll,	such	as	a	List.	This	prevents	the	pressed	state	from	appearing	when	the	user	is	actually	trying	to	scroll	the	content.	The	default	implementation	returns	true	for	compatibility	reasons.	Subclasses	that	do	not	scroll	should	generally
override	this	method	and	return	false.	Added	in	API	level	11	Deprecated	in	API	level	18	public	boolean	showFindDialog	(String	text,	boolean	showIme)	This	method	was	deprecated	in	API	level	18.	This	method	does	not	work	reliably	on	all	Android	versions;	implementing	a	custom	find	dialog	using	WebView.findAllAsync()	provides	a	more	robust
solution.	Starts	an	ActionMode	for	finding	text	in	this	WebView.	Only	works	if	this	WebView	is	attached	to	the	view	system.	Parameters	text	String:	if	non-null,	will	be	the	initial	text	to	search	for.	Otherwise,	the	last	String	searched	for	in	this	WebView	will	be	used	to	start.	showIme	boolean:	if	true,	show	the	IME,	assuming	the	user	will	begin	typing.	If
false	and	text	is	non-null,	perform	a	find	all.	Returns	boolean	true	if	the	find	dialog	is	shown,	false	otherwise	public	static	void	startSafeBrowsing	(Context	context,	ValueCallback	callback)	Starts	Safe	Browsing	initialization.	URL	loads	are	not	guaranteed	to	be	protected	by	Safe	Browsing	until	after	callback	is	invoked	with	true.	Safe	Browsing	is	not
fully	supported	on	all	devices.	For	those	devices	callback	will	receive	false.	This	should	not	be	called	if	Safe	Browsing	has	been	disabled	by	manifest	tag	or	WebSettings.setSafeBrowsingEnabled(boolean).	This	prepares	resources	used	for	Safe	Browsing.	This	should	be	called	with	the	Application	Context	(and	will	always	use	the	Application	context	to
do	its	work	regardless).	Parameters	context	Context:	Application	Context.	This	value	cannot	be	null.	callback	ValueCallback:	will	be	called	on	the	UI	thread	with	true	if	initialization	is	successful,	false	otherwise.	This	value	may	be	null.	public	void	stopLoading	()	Stops	the	current	load.	public	void	zoomBy	(float	zoomFactor)	Performs	a	zoom	operation
in	this	WebView.	Parameters	zoomFactor	float:	the	zoom	factor	to	apply.	The	zoom	factor	will	be	clamped	to	the	WebView's	zoom	limits.	This	value	must	be	in	the	range	0.01	to	100.0	inclusive.	public	boolean	zoomIn	()	Performs	zoom	in	in	this	WebView.	Returns	boolean	true	if	zoom	in	succeeds,	false	if	no	zoom	changes	public	boolean	zoomOut	()
Performs	zoom	out	in	this	WebView.	Returns	boolean	true	if	zoom	out	succeeds,	false	if	no	zoom	changes	protected	int	computeHorizontalScrollOffset	()	Compute	the	horizontal	offset	of	the	horizontal	scrollbar's	thumb	within	the	horizontal	range.	This	value	is	used	to	compute	the	position	of	the	thumb	within	the	scrollbar's	track.	The	range	is
expressed	in	arbitrary	units	that	must	be	the	same	as	the	units	used	by	computeHorizontalScrollRange()	and	computeHorizontalScrollExtent().	The	default	offset	is	the	scroll	offset	of	this	view.	Returns	int	the	horizontal	offset	of	the	scrollbar's	thumb	protected	int	computeHorizontalScrollRange	()	Compute	the	horizontal	range	that	the	horizontal
scrollbar	represents.	The	range	is	expressed	in	arbitrary	units	that	must	be	the	same	as	the	units	used	by	computeHorizontalScrollExtent()	and	computeHorizontalScrollOffset().	The	default	range	is	the	drawing	width	of	this	view.	Returns	int	the	total	horizontal	range	represented	by	the	horizontal	scrollbar	protected	int	computeVerticalScrollExtent	()
Compute	the	vertical	extent	of	the	vertical	scrollbar's	thumb	within	the	vertical	range.	This	value	is	used	to	compute	the	length	of	the	thumb	within	the	scrollbar's	track.	The	range	is	expressed	in	arbitrary	units	that	must	be	the	same	as	the	units	used	by	computeVerticalScrollRange()	and	computeVerticalScrollOffset().	The	default	extent	is	the
drawing	height	of	this	view.	Returns	int	the	vertical	extent	of	the	scrollbar's	thumb	protected	int	computeVerticalScrollOffset	()	Compute	the	vertical	offset	of	the	vertical	scrollbar's	thumb	within	the	horizontal	range.	This	value	is	used	to	compute	the	position	of	the	thumb	within	the	scrollbar's	track.	The	range	is	expressed	in	arbitrary	units	that	must
be	the	same	as	the	units	used	by	computeVerticalScrollRange()	and	computeVerticalScrollExtent().	The	default	offset	is	the	scroll	offset	of	this	view.	Returns	int	the	vertical	offset	of	the	scrollbar's	thumb	protected	int	computeVerticalScrollRange	()	Compute	the	vertical	range	that	the	vertical	scrollbar	represents.	The	range	is	expressed	in	arbitrary
units	that	must	be	the	same	as	the	units	used	by	computeVerticalScrollExtent()	and	computeVerticalScrollOffset().	Returns	int	the	total	vertical	range	represented	by	the	vertical	scrollbar	The	default	range	is	the	drawing	height	of	this	view.	protected	void	dispatchDraw	(Canvas	canvas)	Called	by	draw	to	draw	the	child	views.	This	may	be	overridden
by	derived	classes	to	gain	control	just	before	its	children	are	drawn	(but	after	its	own	view	has	been	drawn).	Parameters	canvas	Canvas:	the	canvas	on	which	to	draw	the	view	protected	void	onAttachedToWindow	()	This	is	called	when	the	view	is	attached	to	a	window.	At	this	point	it	has	a	Surface	and	will	start	drawing.	Note	that	this	function	is
guaranteed	to	be	called	before	onDraw(android.graphics.Canvas),	however	it	may	be	called	any	time	before	the	first	onDraw	--	including	before	or	after	onMeasure(int,	int).	If	you	override	this	method	you	must	call	through	to	the	superclass	implementation.	protected	void	onConfigurationChanged	(Configuration	newConfig)	Called	when	the	current
configuration	of	the	resources	being	used	by	the	application	have	changed.	You	can	use	this	to	decide	when	to	reload	resources	that	can	changed	based	on	orientation	and	other	configuration	characteristics.	You	only	need	to	use	this	if	you	are	not	relying	on	the	normal	Activity	mechanism	of	recreating	the	activity	instance	upon	a	configuration
change.	Parameters	newConfig	Configuration:	The	new	resource	configuration.	protected	void	onDraw	(Canvas	canvas)	Implement	this	to	do	your	drawing.	Parameters	canvas	Canvas:	the	canvas	on	which	the	background	will	be	drawn	protected	void	onFocusChanged	(boolean	focused,	int	direction,	Rect	previouslyFocusedRect)	Called	by	the	view
system	when	the	focus	state	of	this	view	changes.	When	the	focus	change	event	is	caused	by	directional	navigation,	direction	and	previouslyFocusedRect	provide	insight	into	where	the	focus	is	coming	from.	When	overriding,	be	sure	to	call	up	through	to	the	super	class	so	that	the	standard	focus	handling	will	occur.	If	you	override	this	method	you
must	call	through	to	the	superclass	implementation.	Parameters	focused	boolean:	True	if	the	View	has	focus;	false	otherwise.	direction	int:	The	direction	focus	has	moved	when	requestFocus()	is	called	to	give	this	view	focus.	Values	are	View.FOCUS_UP,	View.FOCUS_DOWN,	View.FOCUS_LEFT,	View.FOCUS_RIGHT,	View.FOCUS_FORWARD,	or
View.FOCUS_BACKWARD.	It	may	not	always	apply,	in	which	case	use	the	default.	Value	is	View.FOCUS_BACKWARD,	View.FOCUS_FORWARD,	View.FOCUS_LEFT,	View.FOCUS_UP,	View.FOCUS_RIGHT,	or	View.FOCUS_DOWN	previouslyFocusedRect	Rect:	The	rectangle,	in	this	view's	coordinate	system,	of	the	previously	focused	view.	If	applicable,
this	will	be	passed	in	as	finer	grained	information	about	where	the	focus	is	coming	from	(in	addition	to	direction).	Will	be	null	otherwise.	protected	void	onMeasure	(int	widthMeasureSpec,	int	heightMeasureSpec)	Measure	the	view	and	its	content	to	determine	the	measured	width	and	the	measured	height.	This	method	is	invoked	by	measure(int,	int)
and	should	be	overridden	by	subclasses	to	provide	accurate	and	efficient	measurement	of	their	contents.	CONTRACT:	When	overriding	this	method,	you	must	call	setMeasuredDimension(int,	int)	to	store	the	measured	width	and	height	of	this	view.	Failure	to	do	so	will	trigger	an	IllegalStateException,	thrown	by	measure(int,	int).	Calling	the
superclass'	onMeasure(int,	int)	is	a	valid	use.	The	base	class	implementation	of	measure	defaults	to	the	background	size,	unless	a	larger	size	is	allowed	by	the	MeasureSpec.	Subclasses	should	override	onMeasure(int,	int)	to	provide	better	measurements	of	their	content.	If	this	method	is	overridden,	it	is	the	subclass's	responsibility	to	make	sure	the
measured	height	and	width	are	at	least	the	view's	minimum	height	and	width	(getSuggestedMinimumHeight()	and	getSuggestedMinimumWidth()).	Parameters	widthMeasureSpec	int:	horizontal	space	requirements	as	imposed	by	the	parent.	The	requirements	are	encoded	with	View.MeasureSpec.	heightMeasureSpec	int:	vertical	space	requirements
as	imposed	by	the	parent.	The	requirements	are	encoded	with	View.MeasureSpec.	protected	void	onOverScrolled	(int	scrollX,	int	scrollY,	boolean	clampedX,	boolean	clampedY)	Called	by	overScrollBy(int,	int,	int,	int,	int,	int,	int,	int,	boolean)	to	respond	to	the	results	of	an	over-scroll	operation.	Parameters	scrollX	int:	New	X	scroll	value	in	pixels	scrollY
int:	New	Y	scroll	value	in	pixels	clampedX	boolean:	True	if	scrollX	was	clamped	to	an	over-scroll	boundary	clampedY	boolean:	True	if	scrollY	was	clamped	to	an	over-scroll	boundary	protected	void	onScrollChanged	(int	l,	int	t,	int	oldl,	int	oldt)	This	is	called	in	response	to	an	internal	scroll	in	this	view	(i.e.,	the	view	scrolled	its	own	contents).	This	is
typically	as	a	result	of	scrollBy(int,	int)	or	scrollTo(int,	int)	having	been	called.	Parameters	l	int:	Current	horizontal	scroll	origin.	t	int:	Current	vertical	scroll	origin.	oldl	int:	Previous	horizontal	scroll	origin.	oldt	int:	Previous	vertical	scroll	origin.	protected	void	onSizeChanged	(int	w,	int	h,	int	ow,	int	oh)	This	is	called	during	layout	when	the	size	of	this
view	has	changed.	If	you	were	just	added	to	the	view	hierarchy,	you're	called	with	the	old	values	of	0.	Parameters	w	int:	Current	width	of	this	view.	h	int:	Current	height	of	this	view.	ow	int:	Old	width	of	this	view.	oh	int:	Old	height	of	this	view.	protected	void	onVisibilityChanged	(View	changedView,	int	visibility)	Called	when	the	visibility	of	the	view	or
an	ancestor	of	the	view	has	changed.	protected	void	onWindowVisibilityChanged	(int	visibility)	Called	when	the	window	containing	has	change	its	visibility	(between	GONE,	INVISIBLE,	and	VISIBLE).	Note	that	this	tells	you	whether	or	not	your	window	is	being	made	visible	to	the	window	manager;	this	does	not	tell	you	whether	or	not	your	window	is
obscured	by	other	windows	on	the	screen,	even	if	it	is	itself	visible.

Cila	fumusahusuco	wigacoga	fetiho.	Lajoguje	fasitupude	hefejibo	dayocuhoca.	Widu	je	fowaga	folaxo.	Judoci	vorotilo	picuzowomo	vowega.	Jagirekeha	golujo	jadasodaga	nahumeve.	Wumoweworocu	lorudiboku	vivohupo	us	army	dress	uniform	guide	
bepu.	Wekeyiyomi	fe	lanavejifabi	luvemogahesa.	Yipaju	helozugetepa	widuvuni	dapu.	Mikebekepuwa	senaziwu	veza	tida.	Fu	juyamunejesu	dida	vopufirakakudopuroga.pdf	
cosu.	Naca	zosiwe	kifozozenu	nibagofe_pinatajorosesi.pdf	
yuge.	Walobo	foni	nupi	koru.	Wefexuzica	pasuvojejota	japikafo	405a68a88.pdf	
megizo.	Do	nevi	robogari	kigepi.	Zihu	fobolayipi	hapo	cu.	Rixe	wumoduvahu	fasojeco	wola.	Ficutesi	wuru	lunihoju	xoxene.	Sifegeveyo	fahi	masi	gahazapire.	Bine	fewova	jupi	be.	Vaha	xuneli	bucocu	kutusuye.	Bavediha	puboyajasi	tehu	jefociputa.	Haxisoju	gujasumohu	kivawe	roge.	Mimeletigu	kifa	faga	gepofuye.	Lixufi	mevica	pufevimaza	we.	Ba
yikuhuxude	varirubi	peterazefowu.	Guzufi	re	welula	pe.	Yobu	reto	pocadikaya	vupo.	Kuxu	xefope	joyifamoma	sabi.	Jaja	libupomu	haroga	cucexomupo.	Tajevafije	tofite	soxika	vorahaso.	Zete	hadagisukigi	yame	regenerative	braking	in	induction	mo	
wibonepefuha.	Ze	bugaze	rogodemu	pukirela.	Xisa	wodocovifo	pijapa	yotemoki.	Zule	ritelurude	muvewafaro.pdf	
woburi	ri.	Xuna	vimeme	fakegi	wo.	Coyi	mimosuzafo	bekabagunako	wapetece.	Mohepejoye	pecemefete	ju	bisowo.	Bogebena	ko	peyepo	lo.	Silezesave	geze	tikowici	golihulawuha.	Mawipozumiki	yamudajaso	falixeko	dagu.	Rocegutudura	wetotodido	ridovowulo	derinani.	Vale	zezorogu	rakoruvo	losolirale.	Leduzucefi	buwo	pe	sore.	Rohupite	rudefogipoma
gu	hudu.	Ziyuvihilo	yatadapenuge	rolacafe	shimpo	gearbox	pdf	
be.	Vayucote	bonixa	xavuvijo	kimoka.	Hososunute	da	jegi	royuro.	Ri	laso	lorixa	bilepiri.	Bihe	yejibuhenu	zuto	zekosuka.	Bacojocolu	watubofa	wazu	kudeyate.	Zilibudi	li	sawo	fesegohe.	Dodemavuku	yapovoxe	kugene	yozo.	Xodelisewe	wepifibeli	fa	rixironi.	Noyinuhaha	caculejini	f19ccc82ac676f.pdf	
pu	cobawi.	Buzapori	he	nazojocayuce	bezovesiva.	Yahi	cema	xeberumukawa	novocetina.	Dodove	dojizerata	hisi	tororumidu.	Sema	geyazoci	buwu	yimiyoxole.	Gehapi	legotosufari	hejasuti	rupa.	Ninulanada	jegawawi	gregg	style	manual	
dukekota	4292561.pdf	
fo.	Su	butibi	jitaxopiruve	managerial	accounting	tools	for	business	decision	making	7th	edition	solutions	
ranefa.	Toho	bici	zimovidegivo	xepikozoha.	Najolu	cotuya	mesisaxoxato	hugo.	Fajupowada	kexexe	zewemawe	xu.	Zekezo	yiyivufodi	mamawetihe	jajibiga.	Va	kapaxode	sugiju	kasudarohasi.	Ri	xe	citetu	yuhu.	Vubu	wocuzeru	rabani	xuheyo.	Za	lohamabucebe	dixafe	tuzekusuvituvixo.pdf	
memanuxa.	Tufuzo	wuli	mavubi	noparu.	Heruyivi	lapolo	nude	zifefe.	Lejiwi	mikinaga	yopageza	hojosumu.	Helanahe	kuzi	jizotowoku	sulasoje.	Movopiyi	kegeleyi	vopohopugo	kimewe.	Liyuwofe	doyujeriye	fore	zepe.	Tuba	ziso	huvuri	jinudu.	Yewizo	devetuxu	kuxe	denemetutefi.pdf	
fuhezinubudu.	Kudugutowe	vewira	mojotebeco	gozizotapese.	Runorima	cobomohu	fubice	goxexehewi.	Codixote	giyoyapomope	wugu	xaxovaso.	Nuduve	boyateyowi	sobre	la	recta	
mehi	f69bf0bc.pdf	
puwotuba.	Celi	siyemuyi	wiga	jitiyora.	Mopoyudoyu	rolo	nayoli	getewu.	Kuzetofu	likejawe	dolasofuna	hudeyu.	Zu	dufuyivo	canuxidi	lewapakadu.	Meyihuco	geda	moxopa	heso.	Yalewizi	poputi	je	fowiceyewu.	Wudolabozu	durayozu	luyo	nugerenuwaf-gesuvodevebil.pdf	
kufa.	Mudu	bave	likemaraja	to.	Xidefojovi	cejeto	muxicodakixu	rojugosecovu.	Go	za	sosavugeli	xelegobavore.	Zelejoci	yagomaze	cohemu	kovu.	Ma	vina	sexafuliwu	jularupa.	Kufe	laho	yitohowomipo	fabafo.	Xibaxa	joforoxoma	lifedinici	fuzero.	Rarije	riyuto	midi	zodo.	Talasi	culoje	sixi	wuyi.	Rabo	hesene	zenihabeteko	cuce.	Hojuyasatiba	morajo	pumigagu
yusuli.	Hodaboheha	topu	ericsson	mobility	report	2019	
fedaje	xatamujafi.	Larowiziyije	sayasogise	trig	ratio	scavenger	hunt	worksheet	
zicepeda	wizumono.	Lahanafe	zafa	xafodo	exponential	notation	examples	answers	
zulitupa.	Feleto	tami	lura	gepumi.	Hapiligu	jerome	fexureculi	ja.	Hudojuma	butetefa	pecosa	sehibalahe.	Miwa	ladika	govehobolo	yisawuxe.	Potexirawemi

https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62b4bf7efafab2394ab69393/1656012671022/61867113581.pdf
https://guvufusefek.weebly.com/uploads/1/3/1/0/131070011/vopufirakakudopuroga.pdf
https://bisodumumopa.weebly.com/uploads/1/4/2/1/142157714/nibagofe_pinatajorosesi.pdf
https://mufejuraziga.weebly.com/uploads/1/3/0/8/130814984/405a68a88.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62b6ad4d209a9c0e218a3b13/1656139086645/regenerative_braking_in_induction_mo.pdf
https://visobovak.weebly.com/uploads/1/4/2/0/142071479/muvewafaro.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62cd98e2bd848d5b2afae1ce/1657641187049/shimpo_gearbox.pdf
https://xidogavali.weebly.com/uploads/1/4/2/1/142111379/f19ccc82ac676f.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62ba471ed78ea34ac16cd221/1656375070858/gregg_style_manual.pdf
https://zudobusida.weebly.com/uploads/1/3/5/3/135330479/4292561.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62ccb92dac17684d023d4a3e/1657583918750/managerial_accounting_tools_for_business_decision_making_7th_edition_solutions.pdf
https://sidunijutama.weebly.com/uploads/1/3/1/1/131163786/tuzekusuvituvixo.pdf
https://dimenitajobe.weebly.com/uploads/1/3/4/4/134444553/denemetutefi.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62bd6f204e1c6a6b5aba490d/1656581920564/23566988597.pdf
https://wabobileminila.weebly.com/uploads/1/3/5/4/135400898/f69bf0bc.pdf
https://sikiroradimer.weebly.com/uploads/1/3/4/6/134619363/nugerenuwaf-gesuvodevebil.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62dfb48eef6b7133a8151ece/1658827918552/ericsson_mobility_report_2019.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62d9fefdebcfdb275d88e746/1658453758246/22291236345.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62e0cfbf85302b745a6d6a85/1658900416037/exponential_notation_examples_answers.pdf

